部署文档
软件要求
- Mysql (5.5+) : 必装
- JDK (1.8+) :必装
- Zookeeper (3.4.6) :必装
- Hadoop (2.7+) :选装, 如果需要使用到EasyScheduler的资源上传,MapReduce任务在线提交则需要安装(上传的资源文件目前保存在Hdfs上)
- Hive (1.2.1+) : 选装,如果跑Hive任务需要安装(
- Reids安装 (2.7.0+) : 选装, 任务队列选择Redis时需要安装
- Spark(1.x,2.x) : 选装,Spark任务提交需要安装
PostgreSQL(8.2.15+) : 选装,PostgreSQL存储过程需要安装
注意:EasyScheduler本身不依赖Hadoop、Hive、Spark、PostgreSQL、Redis,仅是用到了他们的Client jar,用于对应任务的运行。
项目编译
- 执行编译命令:
mvn -U clean package assembly:assembly -Dmaven.test.skip=true
- 查看目录
正常编译完后,会在当前目录生成 target/escheduler-{version}-SNAPSHOT/
bin
conf
lib
script
sql
说明
bin : 工程服务启动脚本 conf : 工程配置文件 lib : 工程依赖jar包,包括各个模块jar和第三方jar script : 工程自动化部署、启动脚本 sql : 工程依赖sql文件
数据库初始化
- 创建database和账号
mysql -h {host} -u {user} -p{password}
mysql> CREATE DATABASE escheduler DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
mysql> GRANT ALL PRIVILEGES ON escheduler.* TO '{user}'@'%' IDENTIFIED BY '{password}';
mysql> GRANT ALL PRIVILEGES ON escheduler.* TO '{user}'@'localhost' IDENTIFIED BY '{password}';
mysql> flush privileges;
- 创建表
说明:在target/escheduler-{version}-SNAPSHOT/sql/有两个sql创建表文件:escheduler.sql和quartz.sql
执行:
mysql -h {host} -u {user} -p{password} -D {db} < escheduler.sql
mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql
创建部署用户
因为easyscheduler worker都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
部署账号
vi /etc/sudoers
# 部署用户是 escheduler 账号
escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
# 并且需要注释掉 Default requiretty 一行
#Default requiretty
配置文件
说明:配置文件位于 target/escheduler-{version}-SNAPSHOT/conf 下面
escheduler-alert
配置邮件告警信息
- alert.properties
#以qq邮箱为例,如果是别的邮箱,请更改对应配置
#alert type is EMAIL/SMS
alert.type=EMAIL
# mail server configuration
mail.protocol=SMTP
mail.server.host=smtp.exmail.qq.com
mail.server.port=25
mail.sender=xxxxxx@qq.com
mail.passwd=xxxxxxx
# xls file path, need manually create it before use if not exist
xls.file.path=/opt/xls
配置告警数据源信息
- alert/data_source.properties
#注意:请替换${xxx}里的内容
# common configuration
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://${ip}:3306/escheduler?characterEncoding=UTF-8
spring.datasource.username=${username}
spring.datasource.password=${password}
# supplement configuration
spring.datasource.initialSize=5
# min connection number
spring.datasource.minIdle=5
# max connection number
spring.datasource.maxActive=20
# max wait time for get connection
spring.datasource.maxWait=60000
# idle connections closed,unit milliseconds
spring.datasource.timeBetweenEvictionRunsMillis=60000
# connection minimum survival time,unit milliseconds
spring.datasource.minEvictableIdleTimeMillis=300000
spring.datasource.validationQuery=SELECT 1
spring.datasource.validationQueryTimeout=3
spring.datasource.testWhileIdle=true
spring.datasource.testOnBorrow=true
spring.datasource.testOnReturn=false
spring.datasource.defaultAutoCommit=true
# open PSCache,set PSCache size
spring.datasource.poolPreparedStatements=false
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
日志配置文件
- alert_logback.xml
<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
<configuration scan="true" scanPeriod="120 seconds"> <!--debug="true" -->
<property name="log.base" value="logs" />
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<appender name="ALERTLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.base}/escheduler-alert.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
<fileNamePattern>${log.base}/escheduler-alert.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
<maxHistory>20</maxHistory>
<maxFileSize>64MB</maxFileSize>
</rollingPolicy>
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<root level="INFO">
<appender-ref ref="ALERTLOGFILE"/>
</root>
</configuration>
escheduler-common
通用配置文件配置,队列选择及地址配置,通用文件目录配置。
- common/common.properties
#task queue implementation, can choose "redis" or "zookeeper", default "zookeeper"
escheduler.queue.impl=zookeeper
#if escheduler.queue.impl=redis, you need to configuration relevant information with redis. redis configuration start
spring.redis.host=${redis_ip}
spring.redis.port=6379
spring.redis.maxIdle=1000
spring.redis.maxTotal=10000
#redis configuration end
# user data directory path, self configuration, please make sure the directory exists and have read write permissions
data.basedir.path=/xxx/xxx
# directory path for user data download. self configuration, please make sure the directory exists and have read write permissions
data.download.basedir.path=/xxx/xxx
# process execute directory. self configuration, please make sure the directory exists and have read write permissions
process.exec.basepath=/xxx/xxx
# data base dir, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/escheduler" is recommended
data.store2hdfs.basepath=/escheduler
# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions
escheduler.env.path=/xxx/xxx/.escheduler_env.sh
escheduler.env.py=/xxx/xxx/escheduler_env.py
#resource.view.suffixs
resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml
# is development state? default "false"
development.state=false
SHELL任务 环境变量配置
.escheduler_env.sh
#self configuration, please make sure the directory exists and have read write permissions
export HADOOP_HOME=/opt/soft/hadoop
export HADOOP_CONF_DIR=/opt/soft/hadoop/etc/hadoop
export SPARK_HOME1=/opt/soft/spark1
export SPARK_HOME2=/opt/soft/spark2
export PYTHON_HOME=/opt/soft/python
export JAVA_HOME=/opt/soft/java
export HIVE_HOME=/opt/soft/hive
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
Python任务 环境变量配置
escheduler_env.py
#self configuration, please make sure the directory exists and have read write execute permissions
import os
HADOOP_HOME="/opt/soft/hadoop"
PYTHON_HOME="/opt/soft/python"
JAVA_HOME="/opt/soft/java"
PATH=os.environ['PATH']
PATH="%s/bin:%s/bin:%s/bin:%s"%(HADOOP_HOME,JAVA_HOME,PYTHON_HOME,PATH)
os.putenv('PATH','%s'%PATH)
hadoop 配置文件
- common/hadoop/hadoop.properties
#please replace the content in ${xxx}
# ha or single namenode
fs.defaultFS=hdfs://${cluster_ipOrName}:8020
#resourcemanager ha note this need ips , eg. 192.168.220.188,192.168.220.189
yarn.resourcemanager.ha.rm.ids=${ip1},${ip2}
# reousrcemanager path
yarn.application.status.address=http://${ip1}:8088/ws/v1/cluster/apps/%s
定时器配置文件
- quartz.properties
#please replace the content in ${xxx}
#============================================================================
# Configure Main Scheduler Properties
#============================================================================
org.quartz.scheduler.instanceName = EasyScheduler
org.quartz.scheduler.instanceId = AUTO
org.quartz.scheduler.makeSchedulerThreadDaemon = true
org.quartz.jobStore.useProperties = false
#============================================================================
# Configure ThreadPool
#============================================================================
org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.makeThreadsDaemons = true
org.quartz.threadPool.threadCount = 25
org.quartz.threadPool.threadPriority = 5
#============================================================================
# Configure JobStore
#============================================================================
org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX
org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.StdJDBCDelegate
org.quartz.jobStore.tablePrefix = QRTZ_
org.quartz.jobStore.isClustered = true
org.quartz.jobStore.misfireThreshold = 60000
org.quartz.jobStore.clusterCheckinInterval = 5000
org.quartz.jobStore.dataSource = myDs
#============================================================================
# Configure Datasources
#============================================================================
org.quartz.dataSource.myDs.driver = com.mysql.jdbc.Driver
org.quartz.dataSource.myDs.URL = jdbc:mysql://${ip}:3306/escheduler?characterEncoding=utf8&useSSL=false
org.quartz.dataSource.myDs.user = ${username}
org.quartz.dataSource.myDs.password = ${password}
org.quartz.dataSource.myDs.maxConnections = 10
org.quartz.dataSource.myDs.validationQuery = select 1
zookeeper 配置文件
- zookeeper.properties
#zookeeper cluster. eg. 192.168.220.188:2181,192.168.220.189:2181,192.168.220.190:2181
zookeeper.quorum=${ip1}:2181,${ip2}:2181,${ip3}:2181
#zookeeper server dirctory
zookeeper.escheduler.master=/escheduler/masters
zookeeper.escheduler.worker=/escheduler/workers
#zookeeper lock dirctory
zookeeper.escheduler.lock.master=/escheduler/lock/master
zookeeper.escheduler.lock.worker=/escheduler/lock/worker
#escheduler root directory
zookeeper.escheduler.root=/escheduler
#escheduler failover directory
zookeeper.escheduler.lock.master.failover=/escheduler/lock/failover/master
zookeeper.escheduler.lock.worker.failover=/escheduler/lock/failover/worker
#escheduler failover directory
zookeeper.session.timeout=300
zookeeper.connection.timeout=300
zookeeper.retry.sleep=1000
zookeeper.retry.maxtime=5
escheduler-dao
dao数据源配置
- dao/data_source.properties
#please replace the content in ${xxx}
# base spring data source configuration
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://${ip}:3306/escheduler?characterEncoding=UTF-8
spring.datasource.username=${username}
spring.datasource.password=${password}
# connection configuration
spring.datasource.initialSize=5
spring.datasource.minIdle=5
spring.datasource.maxActive=20
# max seconds wait connection timeout
spring.datasource.maxWait=60000
# milliseconds for check to close free connections
spring.datasource.timeBetweenEvictionRunsMillis=60000
# connection minimum survival time(milliseconds)
spring.datasource.minEvictableIdleTimeMillis=300000
spring.datasource.validationQuery=SELECT 1
spring.datasource.validationQueryTimeout=3
spring.datasource.testWhileIdle=true
spring.datasource.testOnBorrow=true
spring.datasource.testOnReturn=false
spring.datasource.defaultAutoCommit=true
# open PSCache, specify count PSCache for every connection
spring.datasource.poolPreparedStatements=true
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
# data quality analysis is not currently in use. please ignore the following configuration
# task record flag
task.record.flag=false
task.record.datasource.url=jdbc:mysql://${ip}:3306/etl?characterEncoding=UTF-8
task.record.datasource.username=etl
task.record.datasource.password=xxxxx
escheduler-server
master配置文件
- master.properties
# master execute thread num
master.exec.threads=100
# master execute task number in parallel
master.exec.task.number=20
# master heartbeat interval
master.heartbeat.interval=8
# master commit task retry times
master.task.commit.retryTimes=5
# master commit task interval
master.task.commit.interval=100
# only less than cpu avg load, master server can work. default value : the number of cpu cores * 2
master.max.cpuload.avg=10
# only larger than reserved memory, master server can work. default value : physical memory * 1/10, unit is G.
master.reserved.memory=1
master日志文件
注意:对MASTERLOGFILE,自定义了MasterLogFilter
- master_logback.xml
<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
<configuration scan="true" scanPeriod="120 seconds"> <!--debug="true" -->
<property name="log.base" value="logs" />
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<appender name="MASTERLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.base}/escheduler-master.log</file>
<filter class="cn.escheduler.server.master.log.MasterLogFilter">
<level>INFO</level>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
<fileNamePattern>${log.base}/escheduler-master.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
<maxHistory>20</maxHistory>
<maxFileSize>200MB</maxFileSize>
</rollingPolicy>
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<root level="INFO">
<appender-ref ref="MASTERLOGFILE"/>
</root>
</configuration>
worker配置文件
- worker.properties
# worker execute thread num
worker.exec.threads=100
# worker heartbeat interval
worker.heartbeat.interval=8
# submit the number of tasks at a time
worker.fetch.task.num = 10
# only less than cpu avg load, worker server can work. default value : the number of cpu cores * 2
worker.max.cpuload.avg=10
# only larger than reserved memory, worker server can work. default value : physical memory * 1/6, unit is G.
worker.reserved.memory=1
worker日志文件
注意:对WORKERLOGFILE,自定义了WorkerLogFilter
对于 TASKLOGFILE , 自定义了TaskLogAppender和TaskLogFilter
- worker_logback.xml
<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
<configuration scan="true" scanPeriod="120 seconds">
<property name="log.base" value="logs"/>
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<appender name="TASKLOGFILE" class="cn.escheduler.server.worker.log.TaskLogAppender">
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<level>INFO</level>
</filter>
<filter class="cn.escheduler.server.worker.log.TaskLogFilter"></filter>
<file>${log.base}/{processDefinitionId}/{processInstanceId}/{taskInstanceId}.log</file>
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
<append>true</append>
</appender>
<appender name="WORKERLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.base}/escheduler-worker.log</file>
<filter class="cn.escheduler.server.worker.log.WorkerLogFilter">
<level>INFO</level>
</filter>
<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
<fileNamePattern>${log.base}/escheduler-worker.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
<maxHistory>20</maxHistory>
<maxFileSize>200MB</maxFileSize>
</rollingPolicy>
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<root level="INFO">
<appender-ref ref="TASKLOGFILE"/>
<appender-ref ref="WORKERLOGFILE"/>
</root>
</configuration>
escheduler-web
web配置文件
- application.properties
# server port
server.port=12345
# session config
server.session.timeout=7200
server.context-path=/escheduler/
# file size limit for upload
spring.http.multipart.max-file-size=1024MB
spring.http.multipart.max-request-size=1024MB
#post content
server.max-http-post-size=5000000
web日志文件
- webserver_logback.xml
<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
<configuration scan="true" scanPeriod="120 seconds">
<logger name="org.apache.zookeeper" level="WARN"/>
<logger name="org.apache.hbase" level="WARN"/>
<logger name="org.apache.hadoop" level="WARN"/>
<property name="log.base" value="logs" />
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<appender name="WEBSERVERLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<!-- Log level filter -->
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<level>INFO</level>
</filter>
<file>${log.base}/escheduler-web-server.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
<fileNamePattern>${log.base}/escheduler-web-server.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
<maxHistory>20</maxHistory>
<maxFileSize>64MB</maxFileSize>
</rollingPolicy>
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<root level="INFO">
<appender-ref ref="WEBSERVERLOGFILE" />
</root>
</configuration>
启动停止命令
- 启停Master
sh ./bin/escheduler-daemon.sh start master-server
sh ./bin/escheduler-daemon.sh stop master-server
- 启停Worker
sh ./bin/escheduler-daemon.sh start worker-server
sh ./bin/escheduler-daemon.sh stop worker-server
- 启停Web
sh ./bin/escheduler-daemon.sh start web-server
sh ./bin/escheduler-daemon.sh stop web-server
- 启停Logger
sh ./bin/escheduler-daemon.sh start logger-server sh ./bin/escheduler-daemon.sh stop logger-server
- 启停Alert
sh ./bin/escheduler-daemon.sh start alert-server sh ./bin/escheduler-daemon.sh stop alert-server
一键启停脚本
部署用户配置
创建部署用户
target/escheduler-{version}-SNAPSHOT/script/init_deploy_user.sh
配置
因为escheduler worker 都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的
vi /etc/sudoers
# 部署用户是 escheduler 账号
escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
# 并且需要注释掉 Default requiretty 一行
#Default requiretty
- 初始化 hdfs
target/escheduler-{version}-SNAPSHOT/script/init_hdfs.sh
- 安装配置文件 install_config
# 项目所在目录
BASE_PATH=/opt/soft/program
# 部署的机器
IPS=ark0,ark1,ark2,ark3,ark4
运行配置文件 run_config
# master服务所在机器,>=1个 MASTERS=ark0,ark1 # worker服务所在机器,>=1个 WORKERS=ark2,ark3,ark4 # alert服务所在机器,1个 ALERTS=ark3 # web服务所在机器,1个 WEBSERVER=ark1
初始化安装目录
target/escheduler-{version}-SNAPSHOT/script/init_install_path.sh
将 target/escheduler-{version}-SNAPSHOT 下配置好的conf文件夹和编译好的escheduler-{version}-SNAPSHOT.tar.gz 复制到 主机器的 BASE_PATH 目录下
说明:主机器需要能免密ssh登录到其它机器上
启动所有服务
sh ./deploy/start_all.sh
- 关闭所有服务
sh ./deploy/stop_all.sh
监控服务
monitor_server.py 脚本是监听,master和worker服务挂掉重启的脚本
注意:在全部服务都启动之后启动
nohup python -u monitor_server.py > nohup.out 2>&1 &
日志查看
日志统一存放于指定文件夹内
logs/
├── escheduler-alert-server.log
├── escheduler-master-server.log
|—— escheduler-worker-server.log
|—— escheduler-web-server.log
|—— escheduler-logger-server.log