@ -30,8 +30,8 @@ Its main objectives are as follows:
### what's in the scheduler systems
| Stability | Easy to use | Features | Scalability |
-- | -- | -- | -- | --
Stability | Easy to use | Features | Scalability |
-- | -- | -- | --
Decentralized multi-master and multi-worker | Visualization process defines key information such as task status, task type, retry times, task running machine, visual variables and so on at a glance. | Support pause, recover operation | support custom task types
HA is supported by itself | All process definition operations are visualized, dragging tasks to draw DAGs, configuring data sources and resources. At the same time, for third-party systems, the api mode operation is provided. | Users on easyscheduler can achieve many-to-one or one-to-one mapping relationship through tenants and Hadoop users, which is very important for scheduling large data jobs. " Supports traditional shell tasks, while supporting large data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | The scheduler uses distributed scheduling, and the overall scheduling capability will increase linearly with the scale of the cluster. Master and Worker support dynamic online and offline.
Overload processing: Task queue mechanism, the number of schedulable tasks on a single machine can be flexibly configured, when too many tasks will be cached in the task queue, will not cause machine jam. | One-click deployment | Supports traditional shell tasks, and also support big data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | |