Browse Source

update readme

pull/2/head
lenboo 5 years ago
parent
commit
caec934939
  1. 6
      README.md

6
README.md

@ -30,11 +30,11 @@ Its main objectives are as follows:
### what's in the scheduler systems ### what's in the scheduler systems
  | Stability | Easy to use | Features | Scalability | Stability | Easy to use | Features | Scalability |
-- | -- | -- | -- | -- -- | -- | -- | --
Decentralized multi-master and multi-worker | Visualization process defines key information such as task status, task type, retry times, task running machine, visual variables and so on at a glance.  |  Support pause, recover operation | support custom task types Decentralized multi-master and multi-worker | Visualization process defines key information such as task status, task type, retry times, task running machine, visual variables and so on at a glance.  |  Support pause, recover operation | support custom task types
HA is supported by itself | All process definition operations are visualized, dragging tasks to draw DAGs, configuring data sources and resources. At the same time, for third-party systems, the api mode operation is provided. | Users on easyscheduler can achieve many-to-one or one-to-one mapping relationship through tenants and Hadoop users, which is very important for scheduling large data jobs. " Supports traditional shell tasks, while supporting large data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | The scheduler uses distributed scheduling, and the overall scheduling capability will increase linearly with the scale of the cluster. Master and Worker support dynamic online and offline. HA is supported by itself | All process definition operations are visualized, dragging tasks to draw DAGs, configuring data sources and resources. At the same time, for third-party systems, the api mode operation is provided. | Users on easyscheduler can achieve many-to-one or one-to-one mapping relationship through tenants and Hadoop users, which is very important for scheduling large data jobs. " Supports traditional shell tasks, while supporting large data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | The scheduler uses distributed scheduling, and the overall scheduling capability will increase linearly with the scale of the cluster. Master and Worker support dynamic online and offline.
Overload processing: Task queue mechanism, the number of schedulable tasks on a single machine can be flexibly configured, when too many tasks will be cached in the task queue, will not cause machine jam. | One-click deployment | Supports traditional shell tasks, and also support big data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | | Overload processing: Task queue mechanism, the number of schedulable tasks on a single machine can be flexibly configured, when too many tasks will be cached in the task queue, will not cause machine jam. | One-click deployment | Supports traditional shell tasks, and also support big data platform task scheduling: MR, Spark, SQL (mysql, postgresql, hive, sparksql), Python, Procedure, Sub_Process | |

Loading…
Cancel
Save