* [Feature][Task Plugin] Add mlflow task plugin (#9725) * [Feature][Task Plugin] Add mlflow task plugin UI (#9725) * [Feature][Task Plugin] fix license header (#9725) * [Feature][Task Plugin] fix license header (#9725) * [Feature][Task Plugin] revert unnecessary * [Feature][Task Plugin] add auto ml to mlflow task plugin * [DOC] add mlflow document * [DOC] fix mlflow docs imgs * [DOC] fix dead link localhost:5000 * [DOC] fix dead link localhost:5000 * [DOC] remove dead link localhost:5000 * Update docs/docs/en/guide/task/mlflow.md * Update docs/docs/zh/guide/task/mlflow.md * [DOC] format ui code * [DOC] remove dead link localhost:5000 * [Feature][Task Plugin] revert unnecessary * fix some nits * Move the personal repository to the public repository. * Run the command directly instead of saving the file * fix paramsMap initialize * revert unnecessary Co-authored-by: Jiajie Zhong <zhongjiajie955@gmail.com>3.1.0-release
@ -0,0 +1,117 @@
|
||||
# MLflow Node |
||||
|
||||
## Overview |
||||
|
||||
[MLflow](https://mlflow.org) is an excellent open source platform to manage the ML lifecycle, including experimentation, |
||||
reproducibility, deployment, and a central model registry. |
||||
|
||||
Mlflow task is used to perform mlflow project tasks, which include basic algorithmic and autoML capabilities ( |
||||
User-defined MLFlow project task execution will be supported in the near future) |
||||
|
||||
## Create Task |
||||
|
||||
- Click `Project -> Management-Project -> Name-Workflow Definition`, and click the "Create Workflow" button to enter the |
||||
DAG editing page. |
||||
- Drag from the toolbar <img src="/img/tasks/icons/mlflow.png" width="15"/> task node to canvas. |
||||
|
||||
## Task Parameter |
||||
|
||||
- DolphinScheduler common parameters |
||||
- **Node name**: The node name in a workflow definition is unique. |
||||
- **Run flag**: Identifies whether this node schedules normally, if it does not need to execute, select |
||||
the `prohibition execution`. |
||||
- **Descriptive information**: Describe the function of the node. |
||||
- **Task priority**: When the number of worker threads is insufficient, execute in the order of priority from high |
||||
to low, and tasks with the same priority will execute in a first-in first-out order. |
||||
- **Worker grouping**: Assign tasks to the machines of the worker group to execute. If `Default` is selected, |
||||
randomly select a worker machine for execution. |
||||
- **Environment Name**: Configure the environment name in which run the script. |
||||
- **Times of failed retry attempts**: The number of times the task failed to resubmit. |
||||
- **Failed retry interval**: The time interval (unit minute) for resubmitting the task after a failed task. |
||||
- **Delayed execution time**: The time (unit minute) that a task delays in execution. |
||||
- **Timeout alarm**: Check the timeout alarm and timeout failure. When the task runs exceed the "timeout", an alarm |
||||
email will send and the task execution will fail. |
||||
- **Custom parameter**: It is a local user-defined parameter for mlflow, and will replace the content |
||||
with `${variable}` in the script. |
||||
- **Predecessor task**: Selecting a predecessor task for the current task, will set the selected predecessor task as |
||||
upstream of the current task. |
||||
|
||||
- MLflow task specific parameters |
||||
- **mlflow server tracking uri** :MLflow server uri, default http://localhost:5000. |
||||
- **experiment name** :The experiment in which the task is running, if none, is created. |
||||
- **register model** :Register the model or not. If register is selected, the following parameters are expanded. |
||||
- **model name** : The registered model name is added to the original model version and registered as |
||||
Production. |
||||
- **job type** : The type of task to run, currently including the underlying algorithm and AutoML. (User-defined |
||||
MLFlow project task execution will be supported in the near future) |
||||
- BasicAlgorithm specific parameters |
||||
- **algorithm** :The selected algorithm currently supports `LR`, `SVM`, `LightGBM` and `XGboost` based |
||||
on [scikit-learn](https://scikit-learn.org/) form. |
||||
- **Parameter search space** : Parameter search space when running the corresponding algorithm, which can be |
||||
empty. For example, the parameter `max_depth=[5, 10];n_estimators=[100, 200]` for lightgbm 。The convention |
||||
will be passed with '; 'shards each parameter, using the name before the equal sign as the parameter name, |
||||
and using the name after the equal sign to get the corresponding parameter value through `python eval()`. |
||||
- AutoML specific parameters |
||||
- **AutoML tool** : The AutoML tool used, currently |
||||
supports [autosklearn](https://github.com/automl/auto-sklearn) |
||||
and [flaml](https://github.com/microsoft/FLAML) |
||||
- Parameters common to BasicAlgorithm and AutoML |
||||
- **data path** : The absolute path of the file or folder. Ends with .csv for file or contain train.csv and |
||||
test.csv for folder(In the suggested way, users should build their own test sets for model evaluation)。 |
||||
- **parameters** : Parameter when initializing the algorithm/AutoML model, which can be empty. For example |
||||
parameters `"time_budget=30;estimator_list=['lgbm']"` for flaml 。The convention will be passed with '; 'shards |
||||
each parameter, using the name before the equal sign as the parameter name, and using the name after the equal |
||||
sign to get the corresponding parameter value through `python eval()`. |
||||
- BasicAlgorithm |
||||
- [lr](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression) |
||||
- [SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC) |
||||
- [lightgbm](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier) |
||||
- [xgboost](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier) |
||||
- AutoML |
||||
- [flaml](https://microsoft.github.io/FLAML/docs/reference/automl#automl-objects) |
||||
- [autosklearn](https://automl.github.io/auto-sklearn/master/api.html) |
||||
|
||||
## Task Example |
||||
|
||||
### Preparation |
||||
|
||||
#### Conda env |
||||
|
||||
You need to enter the admin account to configure a conda environment variable(Please |
||||
install [anaconda](https://docs.continuum.io/anaconda/install/) |
||||
or [miniconda](https://docs.conda.io/en/latest/miniconda.html#installing ) in advance ) |
||||
|
||||
![mlflow-conda-env](/img/tasks/demo/mlflow-conda-env.png) |
||||
|
||||
Note During the configuration task, select the conda environment created above. Otherwise, the program cannot find the |
||||
Conda environment. |
||||
|
||||
![mlflow-set-conda-env](/img/tasks/demo/mlflow-set-conda-env.png) |
||||
|
||||
#### Start the mlflow service |
||||
|
||||
Make sure you have installed MLflow, using 'PIP Install MLFlow'. |
||||
|
||||
Create a folder where you want to save your experiments and models and start mlFlow service. |
||||
|
||||
```sh |
||||
mkdir mlflow |
||||
cd mlflow |
||||
mlflow server -h 0.0.0.0 -p 5000 --serve-artifacts --backend-store-uri sqlite:///mlflow.db |
||||
``` |
||||
|
||||
After running, an MLflow service is started |
||||
|
||||
### Run BasicAlgorithm task |
||||
|
||||
The following example shows how to create an MLflow BasicAlgorithm task. |
||||
|
||||
![mlflow-basic-algorithm](/img/tasks/demo/mlflow-basic-algorithm.png) |
||||
|
||||
After this, you can visit the MLFlow service (`http://localhost:5000`) page to view the experiments and models. |
||||
|
||||
![mlflow-server](/img/tasks/demo/mlflow-server.png) |
||||
|
||||
### Run AutoML task |
||||
|
||||
![mlflow-automl](/img/tasks/demo/mlflow-automl.png) |
@ -0,0 +1,97 @@
|
||||
# MLflow节点 |
||||
|
||||
## 综述 |
||||
|
||||
[MLflow](https://mlflow.org) 是一个MLops领域一个优秀的开源项目, 用于管理机器学习的生命周期,包括实验、可再现性、部署和中心模型注册。 |
||||
|
||||
MLflow 任务用于执行 MLflow Project 任务,其中包含了阈值的基础算法能力与AutoML能力(将在不久将来支持用户自定义的mlflow project任务执行)。 |
||||
|
||||
## 创建任务 |
||||
|
||||
- 点击项目管理-项目名称-工作流定义,点击“创建工作流”按钮,进入 DAG 编辑页面; |
||||
- 拖动工具栏的 <img src="/img/tasks/icons/mlflow.png" width="15"/> 任务节点到画板中。 |
||||
|
||||
## 任务参数 |
||||
|
||||
- DS通用参数 |
||||
- **节点名称** :设置任务的名称。一个工作流定义中的节点名称是唯一的。 |
||||
- **运行标志** :标识这个节点是否能正常调度,如果不需要执行,可以打开禁止执行开关。 |
||||
- **描述** :描述该节点的功能。 |
||||
- **任务优先级** :worker 线程数不足时,根据优先级从高到低依次执行,优先级一样时根据先进先出原则执行。 |
||||
- **Worker 分组** :任务分配给 worker 组的机器执行,选择 Default,会随机选择一台 worker 机执行。 |
||||
- **环境名称** :配置运行脚本的环境。 |
||||
- **失败重试次数** :任务失败重新提交的次数。 |
||||
- **失败重试间隔** :任务失败重新提交任务的时间间隔,以分钟为单位。 |
||||
- **延迟执行时间** :任务延迟执行的时间,以分钟为单位。 |
||||
- **超时告警** :勾选超时告警、超时失败,当任务超过"超时时长"后,会发送告警邮件并且任务执行失败。 |
||||
- **自定义参数** :是 mlflow 局部的用户自定义参数,会替换脚本中以 ${变量} 的内容 |
||||
- **前置任务** :选择当前任务的前置任务,会将被选择的前置任务设置为当前任务的上游。 |
||||
|
||||
- MLflow任务特定参数 |
||||
- **mlflow server tracking uri** :MLflow server 的连接, 默认 http://localhost:5000。 |
||||
- **实验名称** :任务运行时所在的实验,若无则创建。 |
||||
- **注册模型** :是否注册模型,若选择注册,则会展开以下参数。 |
||||
- **注册的模型名称** : 注册的模型名称,会在原来的基础上加上一个模型版本,并注册为Production。 |
||||
- **任务类型** : 运行的任务类型,目前包括基础算法与AutoML, 后续将会支持用户自定义的ML Project。 |
||||
- 基础算法下的特有参数 |
||||
- **算法** :选择的算法,目前基于 [scikit-learn](https://scikit-learn.org/) 形式支持 `lr`, `svm`, `lightgbm`, `xgboost`. |
||||
- **参数搜索空间** : 运行对应算法的参数搜索空间, 可为空。如针对lightgbm 的 `max_depth=[5, 10];n_estimators=[100, 200]` |
||||
则会进行对应搜索。约定传入后会以`;`切分各个参数,等号前的名字作为参数名,等号后的名字将以python eval执行得到对应的参数值 |
||||
- AutoML下的参数下的特有参数 |
||||
- **AutoML工具** : 使用的AutoML工具,目前支持 [autosklearn](https://github.com/automl/auto-sklearn) |
||||
, [flaml](https://github.com/microsoft/FLAML) |
||||
- BasicAlgorithm 和 AutoML共有参数 |
||||
- **数据路径** : 文件/文件夹的绝对路径, 若文件需以.csv结尾(自动切分训练集与测试集), 文件夹需包含train.csv和test.csv(建议方式,用户应自行构建测试集用于模型评估)。 |
||||
- **参数** : 初始化模型/AutoML训练器时的参数,可为空, 如针对 flaml 设置`"time_budget=30;estimator_list=['lgbm']"`。约定传入后会以`;` |
||||
切分各个参数,等号前的名字作为参数名,等号后的名字将以python eval执行得到对应的参数值。详细的参数列表如下: |
||||
- BasicAlgorithm |
||||
- [lr](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression) |
||||
- [SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC) |
||||
- [lightgbm](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier) |
||||
- [xgboost](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier) |
||||
- AutoML |
||||
- [flaml](https://microsoft.github.io/FLAML/docs/reference/automl#automl-objects) |
||||
- [autosklearn](https://automl.github.io/auto-sklearn/master/api.html) |
||||
|
||||
## 任务样例 |
||||
|
||||
### 前置准备 |
||||
|
||||
#### conda 环境配置 |
||||
|
||||
你需要进入admin账户配置一个conda环境变量(请提前[安装anaconda](https://docs.continuum.io/anaconda/install/) |
||||
或者[安装miniconda](https://docs.conda.io/en/latest/miniconda.html#installing) ) |
||||
|
||||
![mlflow-conda-env](/img/tasks/demo/mlflow-conda-env.png) |
||||
|
||||
后续注意配置任务时,环境选择上面创建的conda环境,否则程序会找不到conda环境 |
||||
|
||||
![mlflow-set-conda-env](/img/tasks/demo/mlflow-set-conda-env.png) |
||||
|
||||
#### mlflow service 启动 |
||||
|
||||
确保你已经安装mlflow,可以使用`pip install mlflow`进行安装 |
||||
|
||||
在你想保存实验和模型的地方建立一个文件夹,然后启动 mlflow service |
||||
|
||||
``` |
||||
mkdir mlflow |
||||
cd mlflow |
||||
mlflow server -h 0.0.0.0 -p 5000 --serve-artifacts --backend-store-uri sqlite:///mlflow.db |
||||
``` |
||||
|
||||
运行后会启动一个mlflow服务 |
||||
|
||||
### 执行 基础算法 任务 |
||||
|
||||
以下实例展示了如何创建 mlflow 基础算法任务 |
||||
|
||||
![mlflow-basic-algorithm](/img/tasks/demo/mlflow-basic-algorithm.png) |
||||
|
||||
执行完后可以通过访问 mlflow service (`http://localhost:5000`) 页面查看实验与模型 |
||||
|
||||
![mlflow-server](/img/tasks/demo/mlflow-server.png) |
||||
|
||||
### 执行 AutoML 任务 |
||||
|
||||
![mlflow-automl](/img/tasks/demo/mlflow-automl.png) |
After Width: | Height: | Size: 85 KiB |
After Width: | Height: | Size: 137 KiB |
After Width: | Height: | Size: 252 KiB |
After Width: | Height: | Size: 195 KiB |
After Width: | Height: | Size: 137 KiB |
After Width: | Height: | Size: 111 KiB |
@ -0,0 +1,46 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?> |
||||
<!-- |
||||
~ Licensed to the Apache Software Foundation (ASF) under one or more |
||||
~ contributor license agreements. See the NOTICE file distributed with |
||||
~ this work for additional information regarding copyright ownership. |
||||
~ The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
~ (the "License"); you may not use this file except in compliance with |
||||
~ the License. You may obtain a copy of the License at |
||||
~ |
||||
~ http://www.apache.org/licenses/LICENSE-2.0 |
||||
~ |
||||
~ Unless required by applicable law or agreed to in writing, software |
||||
~ distributed under the License is distributed on an "AS IS" BASIS, |
||||
~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
~ See the License for the specific language governing permissions and |
||||
~ limitations under the License. |
||||
--> |
||||
<project xmlns="http://maven.apache.org/POM/4.0.0" |
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" |
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> |
||||
<parent> |
||||
<artifactId>dolphinscheduler-task-plugin</artifactId> |
||||
<groupId>org.apache.dolphinscheduler</groupId> |
||||
<version>dev-SNAPSHOT</version> |
||||
</parent> |
||||
<modelVersion>4.0.0</modelVersion> |
||||
|
||||
<artifactId>dolphinscheduler-task-mlflow</artifactId> |
||||
<packaging>jar</packaging> |
||||
|
||||
<dependencies> |
||||
<dependency> |
||||
<groupId>org.apache.dolphinscheduler</groupId> |
||||
<artifactId>dolphinscheduler-spi</artifactId> |
||||
<scope>provided</scope> |
||||
</dependency> |
||||
<dependency> |
||||
<groupId>org.apache.dolphinscheduler</groupId> |
||||
<artifactId>dolphinscheduler-task-api</artifactId> |
||||
</dependency> |
||||
<dependency> |
||||
<groupId>org.apache.commons</groupId> |
||||
<artifactId>commons-collections4</artifactId> |
||||
</dependency> |
||||
</dependencies> |
||||
</project> |
@ -0,0 +1,42 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
package org.apache.dolphinscheduler.plugin.task.mlflow; |
||||
|
||||
public class MlflowConstants { |
||||
private MlflowConstants() { |
||||
throw new IllegalStateException("Utility class"); |
||||
} |
||||
|
||||
public static final String JOB_TYPE_AUTOML = "AutoML"; |
||||
|
||||
public static final String JOB_TYPE_BASIC_ALGORITHM = "BasicAlgorithm"; |
||||
|
||||
public static final String PRESET_REPOSITORY = "https://github.com/apache/dolphinscheduler-mlflow"; |
||||
|
||||
public static final String PRESET_REPOSITORY_VERSION = "main"; |
||||
|
||||
public static final String PRESET_AUTOML_PROJECT = PRESET_REPOSITORY + "#Project-AutoML"; |
||||
|
||||
public static final String PRESET_BASIC_ALGORITHM_PROJECT = PRESET_REPOSITORY + "#Project-BasicAlgorithm"; |
||||
|
||||
public static final String RUN_PROJECT_BASIC_ALGORITHM_SCRIPT = "run_mlflow_basic_algorithm_project.sh"; |
||||
|
||||
public static final String RUN_PROJECT_AUTOML_SCRIPT = "run_mlflow_automl_project.sh"; |
||||
|
||||
|
||||
} |
@ -0,0 +1,191 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
package org.apache.dolphinscheduler.plugin.task.mlflow; |
||||
|
||||
import org.apache.dolphinscheduler.plugin.task.api.parameters.AbstractParameters; |
||||
|
||||
import java.util.HashMap; |
||||
|
||||
public class MlflowParameters extends AbstractParameters { |
||||
|
||||
/** |
||||
* common parameters |
||||
*/ |
||||
|
||||
private String params = ""; |
||||
|
||||
private String mlflowJobType = "BasicAlgorithm"; |
||||
|
||||
/** |
||||
* AutoML parameters |
||||
*/ |
||||
private String automlTool = "FLAML"; |
||||
|
||||
|
||||
/** |
||||
* basic algorithm parameters |
||||
*/ |
||||
|
||||
private String algorithm = "lightgbm"; |
||||
|
||||
private String searchParams = ""; |
||||
|
||||
private String dataPath; |
||||
|
||||
/** |
||||
* mlflow parameters |
||||
*/ |
||||
|
||||
private String experimentName; |
||||
|
||||
private String modelName = ""; |
||||
|
||||
private String mlflowTrackingUri = "http://127.0.0.1:5000"; |
||||
|
||||
|
||||
public void setAlgorithm(String algorithm) { |
||||
this.algorithm = algorithm; |
||||
} |
||||
|
||||
public String getAlgorithm() { |
||||
return algorithm; |
||||
} |
||||
|
||||
public void setParams(String params) { |
||||
this.params = params; |
||||
} |
||||
|
||||
public String getParams() { |
||||
return params; |
||||
} |
||||
|
||||
public void setSearchParams(String searchParams) { |
||||
this.searchParams = searchParams; |
||||
} |
||||
|
||||
public String getSearchParams() { |
||||
return searchParams; |
||||
} |
||||
|
||||
public void setDataPaths(String dataPath) { |
||||
this.dataPath = dataPath; |
||||
} |
||||
|
||||
public String getDataPath() { |
||||
return dataPath; |
||||
} |
||||
|
||||
|
||||
public void setExperimentNames(String experimentName) { |
||||
this.experimentName = experimentName; |
||||
} |
||||
|
||||
public String getExperimentName() { |
||||
return experimentName; |
||||
} |
||||
|
||||
public void setModelNames(String modelName) { |
||||
this.modelName = modelName; |
||||
} |
||||
|
||||
public String getModelName() { |
||||
return modelName; |
||||
} |
||||
|
||||
public void setMlflowTrackingUris(String mlflowTrackingUri) { |
||||
this.mlflowTrackingUri = mlflowTrackingUri; |
||||
} |
||||
|
||||
public String getMlflowTrackingUri() { |
||||
return mlflowTrackingUri; |
||||
} |
||||
|
||||
public void setMlflowJobType(String mlflowJobType) { |
||||
this.mlflowJobType = mlflowJobType; |
||||
} |
||||
|
||||
public String getMlflowJobType() { |
||||
return mlflowJobType; |
||||
} |
||||
|
||||
public void setAutomlTool(String automlTool) { |
||||
this.automlTool = automlTool; |
||||
} |
||||
|
||||
public String getAutomlTool() { |
||||
return automlTool; |
||||
} |
||||
|
||||
@Override |
||||
public boolean checkParameters() { |
||||
|
||||
Boolean checkResult = experimentName != null && mlflowTrackingUri != null; |
||||
if (mlflowJobType.equals(MlflowConstants.JOB_TYPE_BASIC_ALGORITHM)) { |
||||
checkResult &= dataPath != null; |
||||
} else if (mlflowJobType.equals(MlflowConstants.JOB_TYPE_AUTOML)) { |
||||
checkResult &= dataPath != null; |
||||
checkResult &= automlTool != null; |
||||
} else { |
||||
} |
||||
return checkResult; |
||||
} |
||||
|
||||
public HashMap<String, String> getParamsMap() { |
||||
|
||||
HashMap<String, String> paramsMap = new HashMap<String, String>(); |
||||
paramsMap.put("params", params); |
||||
paramsMap.put("data_path", dataPath); |
||||
paramsMap.put("experiment_name", experimentName); |
||||
paramsMap.put("model_name", modelName); |
||||
paramsMap.put("MLFLOW_TRACKING_URI", mlflowTrackingUri); |
||||
if (mlflowJobType.equals(MlflowConstants.JOB_TYPE_BASIC_ALGORITHM)) { |
||||
addParamsMapForBasicAlgorithm(paramsMap); |
||||
} else if (mlflowJobType.equals(MlflowConstants.JOB_TYPE_AUTOML)) { |
||||
getParamsMapForAutoML(paramsMap); |
||||
} else { |
||||
} |
||||
return paramsMap; |
||||
} |
||||
|
||||
private void addParamsMapForBasicAlgorithm(HashMap<String, String> paramsMap) { |
||||
paramsMap.put("algorithm", algorithm); |
||||
paramsMap.put("search_params", searchParams); |
||||
paramsMap.put("repo", MlflowConstants.PRESET_BASIC_ALGORITHM_PROJECT); |
||||
paramsMap.put("repo_version", MlflowConstants.PRESET_REPOSITORY_VERSION); |
||||
} |
||||
|
||||
private void getParamsMapForAutoML(HashMap<String, String> paramsMap) { |
||||
paramsMap.put("automl_tool", automlTool); |
||||
paramsMap.put("repo", MlflowConstants.PRESET_AUTOML_PROJECT); |
||||
paramsMap.put("repo_version", MlflowConstants.PRESET_REPOSITORY_VERSION); |
||||
} |
||||
|
||||
public String getScriptPath() { |
||||
String projectScript; |
||||
if (mlflowJobType.equals(MlflowConstants.JOB_TYPE_BASIC_ALGORITHM)) { |
||||
projectScript = MlflowConstants.RUN_PROJECT_BASIC_ALGORITHM_SCRIPT; |
||||
} else if (mlflowJobType.equals(MlflowConstants.JOB_TYPE_AUTOML)) { |
||||
projectScript = MlflowConstants.RUN_PROJECT_AUTOML_SCRIPT; |
||||
} else { |
||||
throw new IllegalArgumentException(); |
||||
} |
||||
String scriptPath = MlflowTask.class.getClassLoader().getResource(projectScript).getPath(); |
||||
return scriptPath; |
||||
} |
||||
|
||||
}; |
@ -0,0 +1,139 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
package org.apache.dolphinscheduler.plugin.task.mlflow; |
||||
|
||||
import static org.apache.dolphinscheduler.plugin.task.api.TaskConstants.EXIT_CODE_FAILURE; |
||||
|
||||
import org.apache.dolphinscheduler.plugin.task.api.AbstractTaskExecutor; |
||||
import org.apache.dolphinscheduler.plugin.task.api.ShellCommandExecutor; |
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskExecutionContext; |
||||
import org.apache.dolphinscheduler.plugin.task.api.model.TaskResponse; |
||||
import org.apache.dolphinscheduler.plugin.task.api.parameters.AbstractParameters; |
||||
import org.apache.dolphinscheduler.plugin.task.api.parser.ParameterUtils; |
||||
import org.apache.dolphinscheduler.spi.utils.JSONUtils; |
||||
|
||||
import java.nio.file.Files; |
||||
import java.nio.file.Path; |
||||
|
||||
import java.io.*; |
||||
import java.nio.file.Paths; |
||||
|
||||
/** |
||||
* shell task |
||||
*/ |
||||
public class MlflowTask extends AbstractTaskExecutor { |
||||
|
||||
/** |
||||
* shell parameters |
||||
*/ |
||||
private MlflowParameters mlflowParameters; |
||||
|
||||
/** |
||||
* shell command executor |
||||
*/ |
||||
private ShellCommandExecutor shellCommandExecutor; |
||||
|
||||
/** |
||||
* taskExecutionContext |
||||
*/ |
||||
private TaskExecutionContext taskExecutionContext; |
||||
|
||||
/** |
||||
* constructor |
||||
* |
||||
* @param taskExecutionContext taskExecutionContext |
||||
*/ |
||||
public MlflowTask(TaskExecutionContext taskExecutionContext) { |
||||
super(taskExecutionContext); |
||||
|
||||
this.taskExecutionContext = taskExecutionContext; |
||||
this.shellCommandExecutor = new ShellCommandExecutor(this::logHandle, |
||||
taskExecutionContext, |
||||
logger); |
||||
} |
||||
|
||||
@Override |
||||
public void init() { |
||||
logger.info("shell task params {}", taskExecutionContext.getTaskParams()); |
||||
|
||||
mlflowParameters = JSONUtils.parseObject(taskExecutionContext.getTaskParams(), MlflowParameters.class); |
||||
|
||||
if (!mlflowParameters.checkParameters()) { |
||||
throw new RuntimeException("shell task params is not valid"); |
||||
} |
||||
} |
||||
|
||||
@Override |
||||
public void handle() throws Exception { |
||||
try { |
||||
// construct process
|
||||
String command = buildCommand(); |
||||
TaskResponse commandExecuteResult = shellCommandExecutor.run(command); |
||||
setExitStatusCode(commandExecuteResult.getExitStatusCode()); |
||||
setAppIds(commandExecuteResult.getAppIds()); |
||||
setProcessId(commandExecuteResult.getProcessId()); |
||||
mlflowParameters.dealOutParam(shellCommandExecutor.getVarPool()); |
||||
} catch (Exception e) { |
||||
logger.error("shell task error", e); |
||||
setExitStatusCode(EXIT_CODE_FAILURE); |
||||
throw e; |
||||
} |
||||
} |
||||
|
||||
@Override |
||||
public void cancelApplication(boolean cancelApplication) throws Exception { |
||||
// cancel process
|
||||
shellCommandExecutor.cancelApplication(); |
||||
} |
||||
|
||||
/** |
||||
* create command |
||||
* |
||||
* @return file name |
||||
* @throws Exception exception |
||||
*/ |
||||
private String buildCommand() throws Exception { |
||||
|
||||
/** |
||||
* load script template from resource folder |
||||
*/ |
||||
String script = loadRunScript(mlflowParameters.getScriptPath()); |
||||
script = parseScript(script); |
||||
|
||||
logger.info("raw script : \n{}", script); |
||||
logger.info("task execute path : {}", taskExecutionContext.getExecutePath()); |
||||
|
||||
return script; |
||||
} |
||||
|
||||
@Override |
||||
public AbstractParameters getParameters() { |
||||
return mlflowParameters; |
||||
} |
||||
|
||||
private String parseScript(String script) { |
||||
return ParameterUtils.convertParameterPlaceholders(script, mlflowParameters.getParamsMap()); |
||||
} |
||||
|
||||
public static String loadRunScript(String scriptPath) throws IOException { |
||||
Path path = Paths.get(scriptPath); |
||||
byte[] data = Files.readAllBytes(path); |
||||
String result = new String(data); |
||||
return result; |
||||
} |
||||
} |
@ -0,0 +1,50 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
package org.apache.dolphinscheduler.plugin.task.mlflow; |
||||
|
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskChannel; |
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskExecutionContext; |
||||
import org.apache.dolphinscheduler.plugin.task.api.parameters.AbstractParameters; |
||||
import org.apache.dolphinscheduler.plugin.task.api.parameters.ParametersNode; |
||||
import org.apache.dolphinscheduler.plugin.task.api.parameters.resource.ResourceParametersHelper; |
||||
import org.apache.dolphinscheduler.spi.utils.JSONUtils; |
||||
|
||||
|
||||
public class MlflowTaskChannel implements TaskChannel { |
||||
|
||||
@Override |
||||
public void cancelApplication(boolean status) { |
||||
|
||||
} |
||||
|
||||
@Override |
||||
public MlflowTask createTask(TaskExecutionContext taskRequest) { |
||||
return new MlflowTask(taskRequest); |
||||
} |
||||
|
||||
@Override |
||||
public AbstractParameters parseParameters(ParametersNode parametersNode) { |
||||
return JSONUtils.parseObject(parametersNode.getTaskParams(), MlflowParameters.class); |
||||
} |
||||
|
||||
@Override |
||||
public ResourceParametersHelper getResources(String parameters) { |
||||
return null; |
||||
} |
||||
|
||||
} |
@ -0,0 +1,57 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
package org.apache.dolphinscheduler.plugin.task.mlflow; |
||||
|
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskChannel; |
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskChannelFactory; |
||||
import org.apache.dolphinscheduler.spi.params.base.ParamsOptions; |
||||
import org.apache.dolphinscheduler.spi.params.base.PluginParams; |
||||
import org.apache.dolphinscheduler.spi.params.base.Validate; |
||||
import org.apache.dolphinscheduler.spi.params.input.InputParam; |
||||
import org.apache.dolphinscheduler.spi.params.radio.RadioParam; |
||||
|
||||
import java.util.ArrayList; |
||||
import java.util.List; |
||||
|
||||
import com.google.auto.service.AutoService; |
||||
|
||||
@AutoService(TaskChannelFactory.class) |
||||
public class MlflowTaskChannelFactory implements TaskChannelFactory { |
||||
@Override |
||||
public TaskChannel create() { |
||||
return new MlflowTaskChannel(); |
||||
} |
||||
|
||||
@Override |
||||
public String getName() { |
||||
return "MLFLOW"; |
||||
} |
||||
|
||||
@Override |
||||
public List<PluginParams> getParams() { |
||||
List<PluginParams> paramsList = new ArrayList<>(); |
||||
|
||||
InputParam nodeName = InputParam.newBuilder("name", "$t('Node name')").addValidate(Validate.newBuilder().setRequired(true).build()).build(); |
||||
|
||||
RadioParam runFlag = RadioParam.newBuilder("runFlag", "RUN_FLAG").addParamsOptions(new ParamsOptions("NORMAL", "NORMAL", false)).addParamsOptions(new ParamsOptions("FORBIDDEN", "FORBIDDEN", false)).build(); |
||||
|
||||
paramsList.add(nodeName); |
||||
paramsList.add(runFlag); |
||||
return paramsList; |
||||
} |
||||
} |
@ -0,0 +1,25 @@
|
||||
#!/bin/bash |
||||
# |
||||
# Licensed to the Apache Software Foundation (ASF) under one or more |
||||
# contributor license agreements. See the NOTICE file distributed with |
||||
# this work for additional information regarding copyright ownership. |
||||
# The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
# (the "License"); you may not use this file except in compliance with |
||||
# the License. You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
# |
||||
|
||||
data_path=${data_path} |
||||
export MLFLOW_TRACKING_URI=${MLFLOW_TRACKING_URI} |
||||
echo $data_path |
||||
repo=${repo} |
||||
mlflow run $repo -P tool=${automl_tool} -P data_path=$data_path -P params="${params}" -P model_name="${model_name}" --experiment-name="${experiment_name}" --version="${repo_version}" |
||||
|
||||
echo "training finish" |
@ -0,0 +1,25 @@
|
||||
#!/bin/bash |
||||
# |
||||
# Licensed to the Apache Software Foundation (ASF) under one or more |
||||
# contributor license agreements. See the NOTICE file distributed with |
||||
# this work for additional information regarding copyright ownership. |
||||
# The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
# (the "License"); you may not use this file except in compliance with |
||||
# the License. You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
# |
||||
|
||||
data_path=${data_path} |
||||
export MLFLOW_TRACKING_URI=${MLFLOW_TRACKING_URI} |
||||
echo $data_path |
||||
repo=${repo} |
||||
mlflow run $repo -P algorithm=${algorithm} -P data_path=$data_path -P params="${params}" -P search_params="${search_params}" -P model_name="${model_name}" --experiment-name="${experiment_name}" --version="${repo_version}" |
||||
|
||||
echo "training finish" |
@ -0,0 +1,129 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
package org.apache.dolphinler.plugin.task.mlflow; |
||||
|
||||
import java.util.Date; |
||||
import java.util.UUID; |
||||
|
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskExecutionContext; |
||||
import org.apache.dolphinscheduler.plugin.task.api.TaskExecutionContextCacheManager; |
||||
import org.apache.dolphinscheduler.plugin.task.mlflow.MlflowParameters; |
||||
import org.apache.dolphinscheduler.plugin.task.mlflow.MlflowTask; |
||||
import org.junit.Assert; |
||||
import org.junit.Before; |
||||
import org.junit.Test; |
||||
import org.mockito.Mockito; |
||||
import org.powermock.api.mockito.PowerMockito; |
||||
import org.slf4j.Logger; |
||||
import org.slf4j.LoggerFactory; |
||||
import org.apache.dolphinscheduler.spi.utils.PropertyUtils; |
||||
|
||||
import org.powermock.core.classloader.annotations.PrepareForTest; |
||||
import org.powermock.core.classloader.annotations.PowerMockIgnore; |
||||
import org.junit.runner.RunWith; |
||||
import org.powermock.modules.junit4.PowerMockRunner; |
||||
import org.powermock.core.classloader.annotations.SuppressStaticInitializationFor; |
||||
import org.apache.dolphinscheduler.spi.utils.JSONUtils; |
||||
|
||||
|
||||
@RunWith(PowerMockRunner.class) |
||||
@PrepareForTest({ |
||||
JSONUtils.class, |
||||
PropertyUtils.class, |
||||
}) |
||||
@PowerMockIgnore({"javax.*"}) |
||||
@SuppressStaticInitializationFor("org.apache.dolphinscheduler.spi.utils.PropertyUtils") |
||||
public class MlflowTaskTest { |
||||
private static final Logger logger = LoggerFactory.getLogger(MlflowTask.class); |
||||
|
||||
@Before |
||||
public void before() throws Exception { |
||||
PowerMockito.mockStatic(PropertyUtils.class); |
||||
} |
||||
|
||||
public TaskExecutionContext createContext(MlflowParameters mlflowParameters){ |
||||
String parameters = JSONUtils.toJsonString(mlflowParameters); |
||||
TaskExecutionContext taskExecutionContext = Mockito.mock(TaskExecutionContext.class); |
||||
Mockito.when(taskExecutionContext.getTaskParams()).thenReturn(parameters); |
||||
Mockito.when(taskExecutionContext.getTaskLogName()).thenReturn("MLflowTest"); |
||||
Mockito.when(taskExecutionContext.getExecutePath()).thenReturn("/tmp/dolphinscheduler_test"); |
||||
Mockito.when(taskExecutionContext.getTaskAppId()).thenReturn(UUID.randomUUID().toString()); |
||||
Mockito.when(taskExecutionContext.getTenantCode()).thenReturn("root"); |
||||
Mockito.when(taskExecutionContext.getStartTime()).thenReturn(new Date()); |
||||
Mockito.when(taskExecutionContext.getTaskTimeout()).thenReturn(10000); |
||||
Mockito.when(taskExecutionContext.getLogPath()).thenReturn("/tmp/dolphinscheduler_test/log"); |
||||
Mockito.when(taskExecutionContext.getEnvironmentConfig()).thenReturn("export PATH=$HOME/anaconda3/bin:$PATH"); |
||||
|
||||
String userName = System.getenv().get("USER"); |
||||
Mockito.when(taskExecutionContext.getTenantCode()).thenReturn(userName); |
||||
|
||||
TaskExecutionContextCacheManager.cacheTaskExecutionContext(taskExecutionContext); |
||||
return taskExecutionContext; |
||||
} |
||||
|
||||
@Test |
||||
public void testInitBasicAlgorithmTask() |
||||
throws Exception { |
||||
try { |
||||
MlflowParameters mlflowParameters = createBasicAlgorithmParameters(); |
||||
TaskExecutionContext taskExecutionContext = createContext(mlflowParameters); |
||||
MlflowTask mlflowTask = new MlflowTask(taskExecutionContext); |
||||
mlflowTask.init(); |
||||
mlflowTask.getParameters().setVarPool(taskExecutionContext.getVarPool()); |
||||
} catch (Exception e) { |
||||
Assert.fail(e.getMessage()); |
||||
} |
||||
} |
||||
|
||||
@Test |
||||
public void testInitAutoMLTask() |
||||
throws Exception { |
||||
try { |
||||
MlflowParameters mlflowParameters = createAutoMLParameters(); |
||||
TaskExecutionContext taskExecutionContext = createContext(mlflowParameters); |
||||
MlflowTask mlflowTask = new MlflowTask(taskExecutionContext); |
||||
mlflowTask.init(); |
||||
mlflowTask.getParameters().setVarPool(taskExecutionContext.getVarPool()); |
||||
} catch (Exception e) { |
||||
Assert.fail(e.getMessage()); |
||||
} |
||||
} |
||||
|
||||
private MlflowParameters createBasicAlgorithmParameters() { |
||||
MlflowParameters mlflowParameters = new MlflowParameters(); |
||||
mlflowParameters.setMlflowJobType("BasicAlgorithm"); |
||||
mlflowParameters.setAlgorithm("xgboost"); |
||||
mlflowParameters.setDataPaths("xxxxxxxxxx"); |
||||
mlflowParameters.setExperimentNames("asbbb"); |
||||
mlflowParameters.setMlflowTrackingUris("http://127.0.0.1:5000"); |
||||
return mlflowParameters; |
||||
} |
||||
|
||||
private MlflowParameters createAutoMLParameters() { |
||||
MlflowParameters mlflowParameters = new MlflowParameters(); |
||||
mlflowParameters.setMlflowJobType("AutoML"); |
||||
mlflowParameters.setAutomlTool("autosklearn"); |
||||
mlflowParameters.setParams("time_left_for_this_task=30"); |
||||
mlflowParameters.setDataPaths("xxxxxxxxxxx"); |
||||
mlflowParameters.setExperimentNames("asbbb"); |
||||
mlflowParameters.setModelNames("asbbb"); |
||||
mlflowParameters.setMlflowTrackingUris("http://127.0.0.1:5000"); |
||||
return mlflowParameters; |
||||
} |
||||
|
||||
} |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 111 KiB |
@ -0,0 +1,184 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
import { useI18n } from 'vue-i18n' |
||||
import { useCustomParams } from '.' |
||||
import type { IJsonItem } from '../types' |
||||
import { computed } from 'vue' |
||||
|
||||
export const MLFLOW_JOB_TYPE = [ |
||||
{ |
||||
label: 'BasicAlgorithm', |
||||
value: 'BasicAlgorithm' |
||||
}, |
||||
{ |
||||
label: 'AutoML', |
||||
value: 'AutoML' |
||||
} |
||||
] |
||||
export const ALGORITHM = [ |
||||
{ |
||||
label: 'svm', |
||||
value: 'svm' |
||||
}, |
||||
{ |
||||
label: 'lr', |
||||
value: 'lr' |
||||
}, |
||||
{ |
||||
label: 'lightgbm', |
||||
value: 'lightgbm' |
||||
}, |
||||
{ |
||||
label: 'xgboost', |
||||
value: 'xgboost' |
||||
} |
||||
] |
||||
export const AutoMLTOOL = [ |
||||
{ |
||||
label: 'autosklearn', |
||||
value: 'autosklearn' |
||||
}, |
||||
{ |
||||
label: 'flaml', |
||||
value: 'flaml' |
||||
} |
||||
] |
||||
|
||||
export function useMlflow(model: { [field: string]: any }): IJsonItem[] { |
||||
const { t } = useI18n() |
||||
const registerModelSpan = computed(() => (model.registerModel ? 12 : 24)) |
||||
const modelNameSpan = computed(() => (model.registerModel ? 12 : 0)) |
||||
const algorithmSpan = computed(() => |
||||
model.mlflowJobType === 'BasicAlgorithm' ? 12 : 0 |
||||
) |
||||
const automlToolSpan = computed(() => |
||||
model.mlflowJobType === 'AutoML' ? 12 : 0 |
||||
) |
||||
const searchParamsSpan = computed(() => |
||||
model.mlflowJobType === 'BasicAlgorithm' ? 24 : 0 |
||||
) |
||||
|
||||
return [ |
||||
{ |
||||
type: 'input', |
||||
field: 'mlflowTrackingUri', |
||||
name: t('project.node.mlflow_mlflowTrackingUri'), |
||||
span: 12, |
||||
props: { |
||||
placeholder: t('project.node.mlflow_mlflowTrackingUri_tips') |
||||
}, |
||||
validate: { |
||||
trigger: ['input', 'blur'], |
||||
required: false, |
||||
validator(validate: any, value: string) { |
||||
if (!value) { |
||||
return new Error( |
||||
t('project.node.mlflow_mlflowTrackingUri_error_tips') |
||||
) |
||||
} |
||||
} |
||||
} |
||||
}, |
||||
{ |
||||
type: 'input', |
||||
field: 'experimentName', |
||||
name: t('project.node.mlflow_experimentName'), |
||||
span: 12, |
||||
props: { |
||||
placeholder: t('project.node.mlflow_experimentName_tips') |
||||
}, |
||||
validate: { |
||||
trigger: ['input', 'blur'], |
||||
required: false |
||||
} |
||||
}, |
||||
{ |
||||
type: 'switch', |
||||
field: 'registerModel', |
||||
name: t('project.node.mlflow_registerModel'), |
||||
span: registerModelSpan |
||||
}, |
||||
{ |
||||
type: 'input', |
||||
field: 'modelName', |
||||
name: t('project.node.mlflow_modelName'), |
||||
span: modelNameSpan, |
||||
props: { |
||||
placeholder: t('project.node.mlflow_modelName_tips') |
||||
}, |
||||
validate: { |
||||
trigger: ['input', 'blur'], |
||||
required: false |
||||
} |
||||
}, |
||||
{ |
||||
type: 'select', |
||||
field: 'mlflowJobType', |
||||
name: t('project.node.mlflow_jobType'), |
||||
span: 12, |
||||
options: MLFLOW_JOB_TYPE |
||||
}, |
||||
{ |
||||
type: 'select', |
||||
field: 'algorithm', |
||||
name: t('project.node.mlflow_algorithm'), |
||||
span: algorithmSpan, |
||||
options: ALGORITHM |
||||
}, |
||||
{ |
||||
type: 'select', |
||||
field: 'automlTool', |
||||
name: t('project.node.mlflow_automlTool'), |
||||
span: automlToolSpan, |
||||
options: AutoMLTOOL |
||||
}, |
||||
{ |
||||
type: 'input', |
||||
field: 'dataPath', |
||||
name: t('project.node.mlflow_dataPath'), |
||||
props: { |
||||
placeholder: t('project.node.mlflow_dataPath_tips') |
||||
} |
||||
}, |
||||
{ |
||||
type: 'input', |
||||
field: 'params', |
||||
name: t('project.node.mlflow_params'), |
||||
props: { |
||||
placeholder: t('project.node.mlflow_params_tips') |
||||
}, |
||||
validate: { |
||||
trigger: ['input', 'blur'], |
||||
required: false |
||||
} |
||||
}, |
||||
{ |
||||
type: 'input', |
||||
field: 'searchParams', |
||||
name: t('project.node.mlflow_searchParams'), |
||||
props: { |
||||
placeholder: t('project.node.mlflow_searchParams_tips') |
||||
}, |
||||
span: searchParamsSpan, |
||||
validate: { |
||||
trigger: ['input', 'blur'], |
||||
required: false |
||||
} |
||||
}, |
||||
...useCustomParams({ model, field: 'localParams', isSimple: false }) |
||||
] |
||||
} |
@ -0,0 +1,84 @@
|
||||
/* |
||||
* Licensed to the Apache Software Foundation (ASF) under one or more |
||||
* contributor license agreements. See the NOTICE file distributed with |
||||
* this work for additional information regarding copyright ownership. |
||||
* The ASF licenses this file to You under the Apache License, Version 2.0 |
||||
* (the "License"); you may not use this file except in compliance with |
||||
* the License. You may obtain a copy of the License at |
||||
* |
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
* |
||||
* Unless required by applicable law or agreed to in writing, software |
||||
* distributed under the License is distributed on an "AS IS" BASIS, |
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
* See the License for the specific language governing permissions and |
||||
* limitations under the License. |
||||
*/ |
||||
|
||||
import { reactive } from 'vue' |
||||
import * as Fields from '../fields/index' |
||||
import type { IJsonItem, INodeData, ITaskData } from '../types' |
||||
|
||||
export function useMlflow({ |
||||
projectCode, |
||||
from = 0, |
||||
readonly, |
||||
data |
||||
}: { |
||||
projectCode: number |
||||
from?: number |
||||
readonly?: boolean |
||||
data?: ITaskData |
||||
}) { |
||||
const model = reactive({ |
||||
name: '', |
||||
taskType: 'MLFLOW', |
||||
flag: 'YES', |
||||
description: '', |
||||
timeoutFlag: false, |
||||
localParams: [], |
||||
environmentCode: null, |
||||
failRetryInterval: 1, |
||||
failRetryTimes: 0, |
||||
workerGroup: 'default', |
||||
mlflowTrackingUri: 'http://127.0.0.1:5000', |
||||
algorithm: 'svm', |
||||
mlflowJobType: 'AutoML', |
||||
automlTool: 'flaml', |
||||
delayTime: 0, |
||||
timeout: 30 |
||||
} as INodeData) |
||||
|
||||
let extra: IJsonItem[] = [] |
||||
if (from === 1) { |
||||
extra = [ |
||||
Fields.useTaskType(model, readonly), |
||||
Fields.useProcessName({ |
||||
model, |
||||
projectCode, |
||||
isCreate: !data?.id, |
||||
from, |
||||
processName: data?.processName |
||||
}) |
||||
] |
||||
} |
||||
|
||||
return { |
||||
json: [ |
||||
Fields.useName(from), |
||||
...extra, |
||||
Fields.useRunFlag(), |
||||
Fields.useDescription(), |
||||
Fields.useTaskPriority(), |
||||
Fields.useWorkerGroup(), |
||||
Fields.useEnvironmentName(model, !model.id), |
||||
...Fields.useTaskGroup(model, projectCode), |
||||
...Fields.useFailed(), |
||||
Fields.useDelayTime(model), |
||||
...Fields.useTimeoutAlarm(model), |
||||
...Fields.useMlflow(model), |
||||
Fields.usePreTasks() |
||||
] as IJsonItem[], |
||||
model |
||||
} |
||||
} |