Browse Source

Merge remote-tracking branch 'upstream/dev' into dev

pull/1/MERGE
gongzijian 6 years ago
parent
commit
2f8acc5b7e
  1. 26
      docs/zh_CN/前端部署文档.md
  2. 473
      docs/zh_CN/后端部署文档.md
  3. 115
      install.sh
  4. 0
      script/monitor_server.py
  5. 2
      script/scp_hosts.sh

26
docs/zh_CN/前端部署文档.md

@ -1,20 +1,11 @@
# 前端部署文档
- ##### 1. 开发环境搭建
- ##### 2. 自动化部署
- ##### 3. 手动部署
- ##### 4. Liunx下使用node启动并且守护进程
### 1.开发环境搭建
- #### node安装
- #### 安装node
Node包下载 (注意版本 8.9.4) `https://nodejs.org/download/release/v8.9.4/`
- #### 前端项目构建
- #### 构建项目
用命令行模式 `cd` 进入 `escheduler-ui`项目目录并执行 `npm install` 拉取项目依赖包
> 如果 `npm install` 速度非常慢
@ -23,8 +14,6 @@ Node包下载 (注意版本 8.9.4) `https://nodejs.org/download/release/v8.9.4/`
> 运行 `cnpm install`
> ##### !!!这里特别注意 项目如果在拉取依赖包的过程中报 " node-sass error " 错误,请在执行完后再次执行以下命令
```
npm install node-sass --unsafe-perm //单独安装node-sass依赖
@ -44,6 +33,7 @@ API_BASE = http://192.168.220.204:12345
- `npm run build` 项目打包 (打包后根目录会创建一个名为dist文件夹,用于发布线上Nginx)
### 2.自动部署方式
### 2.自动化部署`
@ -61,6 +51,11 @@ esc_proxy_port="http://192.168.220.154:12345"
前端自动部署基于`yum`操作,部署之前请先安装更新`yum
在项目`escheduler-ui`根目录下,修改install.sh中的参数,执行`./install(线上环境).sh`
### 3.手动部署方式
在项目`escheduler-ui`根目录执行`./install(线上环境).sh`
@ -167,11 +162,8 @@ systemctl restart nginx
│ npm │ 0 │ N/A │ fork │ 6168 │ online │ 31 │ 0s │ 0% │ 5.6 MB │ root │ disabled │
└──────────┴────┴─────────┴──────┴──────┴────────┴─────────┴────────┴─────┴──────────┴──────┴──────────┘
Use `pm2 show <id|name>` to get more details about an app
## FAQ
```
## 问题
#### 1. 上传文件大小限制
编辑配置文件 `vi /etc/nginx/nginx.conf`
```

473
docs/zh_CN/后端部署文档.md

@ -6,7 +6,7 @@
* [Mysql](https://blog.csdn.net/u011886447/article/details/79796802) (5.5+) : 必装
* [JDK](https://www.oracle.com/technetwork/java/javase/downloads/index.html) (1.8+) : 必装
* [ZooKeeper](https://www.jianshu.com/p/de90172ea680)(3.4.6) :必装
* [Hadoop](https://blog.csdn.net/Evankaka/article/details/51612437)(2.7.3) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)
* [Hadoop](https://blog.csdn.net/Evankaka/article/details/51612437)(2.6+) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)
* [Hive](https://staroon.pro/2017/12/09/HiveInstall/)(1.2.1) : 选装,hive任务提交需要安装
* Spark(1.x,2.x) : 选装,Spark任务提交需要安装
* PostgreSQL(8.2.15+) : 选装,PostgreSQL PostgreSQL存储过程需要安装
@ -27,15 +27,6 @@
正常编译完后,会在当前目录生成 target/escheduler-{version}/
```
bin
conf
lib
script
sql
install.sh
```
- 说明
```
@ -74,7 +65,7 @@ mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql
## 创建部署用户
因为escheduler worker都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
- 在所有需要部署调度的机器上创建部署用户,因为worker服务是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
```部署账号
vi /etc/sudoers
@ -86,386 +77,73 @@ escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
#Default requiretty
```
## 配置文件说明
```
说明:配置文件位于 target/escheduler-{version}/conf 下面
```
### escheduler-alert
配置邮件告警信息
* alert.properties
```
#以qq邮箱为例,如果是别的邮箱,请更改对应配置
#alert type is EMAIL/SMS
alert.type=EMAIL
# mail server configuration
mail.protocol=SMTP
mail.server.host=smtp.exmail.qq.com
mail.server.port=25
mail.sender=xxxxxxx@qq.com
mail.passwd=xxxxxxx
# xls file path, need manually create it before use if not exist
xls.file.path=/opt/xls
```
### escheduler-common
通用配置文件配置,队列选择及地址配置,通用文件目录配置
- common/common.properties
```
#task queue implementation, default "zookeeper"
escheduler.queue.impl=zookeeper
# user data directory path, self configuration, please make sure the directory exists and have read write permissions
data.basedir.path=/tmp/escheduler
# directory path for user data download. self configuration, please make sure the directory exists and have read write permissions
data.download.basedir.path=/tmp/escheduler/download
# process execute directory. self configuration, please make sure the directory exists and have read write permissions
process.exec.basepath=/tmp/escheduler/exec
# data base dir, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/escheduler" is recommended
data.store2hdfs.basepath=/escheduler
# whether hdfs starts
hdfs.startup.state=true
# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions
escheduler.env.path=/opt/.escheduler_env.sh
escheduler.env.py=/opt/escheduler_env.py
#resource.view.suffixs
resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml
# is development state? default "false"
development.state=false
```
SHELL任务 环境变量配置
```
说明:配置文件位于 target/escheduler-{version}/conf/env 下面,这个会是Worker执行任务时加载的环境
```
.escheduler_env.sh
```
export HADOOP_HOME=/opt/soft/hadoop
export HADOOP_CONF_DIR=/opt/soft/hadoop/etc/hadoop
export SPARK_HOME1=/opt/soft/spark1
export SPARK_HOME2=/opt/soft/spark2
export PYTHON_HOME=/opt/soft/python
export JAVA_HOME=/opt/soft/java
export HIVE_HOME=/opt/soft/hive
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
```
Python任务 环境变量配置
```
说明:配置文件位于 target/escheduler-{version}/conf/env 下面
```
escheduler_env.py
```
import os
HADOOP_HOME="/opt/soft/hadoop"
SPARK_HOME1="/opt/soft/spark1"
SPARK_HOME2="/opt/soft/spark2"
PYTHON_HOME="/opt/soft/python"
JAVA_HOME="/opt/soft/java"
HIVE_HOME="/opt/soft/hive"
PATH=os.environ['PATH']
PATH="%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s"%(HIVE_HOME,HADOOP_HOME,SPARK_HOME1,SPARK_HOME2,JAVA_HOME,PYTHON_HOME,PATH)
os.putenv('PATH','%s'%PATH)
```
hadoop 配置文件
- common/hadoop/hadoop.properties
```
# ha or single namenode,If namenode ha needs to copy core-site.xml and hdfs-site.xml to the conf directory
fs.defaultFS=hdfs://mycluster:8020
#resourcemanager ha note this need ips , this empty if single
yarn.resourcemanager.ha.rm.ids=192.168.xx.xx,192.168.xx.xx
# If it is a single resourcemanager, you only need to configure one host name. If it is resourcemanager HA, the default configuration is fine
yarn.application.status.address=http://ark1:8088/ws/v1/cluster/apps/%s
```
定时器配置文件
- quartz.properties
```
#============================================================================
# Configure Main Scheduler Properties
#============================================================================
org.quartz.scheduler.instanceName = EasyScheduler
org.quartz.scheduler.instanceId = AUTO
org.quartz.scheduler.makeSchedulerThreadDaemon = true
org.quartz.jobStore.useProperties = false
#============================================================================
# Configure ThreadPool
#============================================================================
org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.makeThreadsDaemons = true
org.quartz.threadPool.threadCount = 25
org.quartz.threadPool.threadPriority = 5
#============================================================================
# Configure JobStore
#============================================================================
org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX
org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.StdJDBCDelegate
org.quartz.jobStore.tablePrefix = QRTZ_
org.quartz.jobStore.isClustered = true
org.quartz.jobStore.misfireThreshold = 60000
org.quartz.jobStore.clusterCheckinInterval = 5000
org.quartz.jobStore.dataSource = myDs
#============================================================================
# Configure Datasources
#============================================================================
org.quartz.dataSource.myDs.driver = com.mysql.jdbc.Driver
org.quartz.dataSource.myDs.URL = jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=utf8&useSSL=false
org.quartz.dataSource.myDs.user = xx
org.quartz.dataSource.myDs.password = xx
org.quartz.dataSource.myDs.maxConnections = 10
org.quartz.dataSource.myDs.validationQuery = select 1
```
zookeeper 配置文件
- zookeeper.properties
```
#zookeeper cluster
zookeeper.quorum=192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181
#escheduler root directory
zookeeper.escheduler.root=/escheduler
#zookeeper server dirctory
zookeeper.escheduler.dead.servers=/escheduler/dead-servers
zookeeper.escheduler.masters=/escheduler/masters
zookeeper.escheduler.workers=/escheduler/workers
#zookeeper lock dirctory
zookeeper.escheduler.lock.masters=/escheduler/lock/masters
zookeeper.escheduler.lock.workers=/escheduler/lock/workers
#escheduler failover directory
zookeeper.escheduler.lock.masters.failover=/escheduler/lock/failover/masters
zookeeper.escheduler.lock.workers.failover=/escheduler/lock/failover/workers
#escheduler failover directory
zookeeper.session.timeout=300
zookeeper.connection.timeout=300
zookeeper.retry.sleep=1000
zookeeper.retry.maxtime=5
```
### escheduler-dao
dao数据源配置
- dao/data_source.properties
```
# base spring data source configuration
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=UTF-8
spring.datasource.username=xx
spring.datasource.password=xx
# connection configuration
spring.datasource.initialSize=5
# min connection number
spring.datasource.minIdle=5
# max connection number
spring.datasource.maxActive=50
# max wait time for get a connection in milliseconds. if configuring maxWait, fair locks are enabled by default and concurrency efficiency decreases.
# If necessary, unfair locks can be used by configuring the useUnfairLock attribute to true.
spring.datasource.maxWait=60000
# milliseconds for check to close free connections
spring.datasource.timeBetweenEvictionRunsMillis=60000
# the Destroy thread detects the connection interval and closes the physical connection in milliseconds if the connection idle time is greater than or equal to minEvictableIdleTimeMillis.
spring.datasource.timeBetweenConnectErrorMillis=60000
# the longest time a connection remains idle without being evicted, in milliseconds
spring.datasource.minEvictableIdleTimeMillis=300000
#the SQL used to check whether the connection is valid requires a query statement. If validation Query is null, testOnBorrow, testOnReturn, and testWhileIdle will not work.
spring.datasource.validationQuery=SELECT 1
#check whether the connection is valid for timeout, in seconds
spring.datasource.validationQueryTimeout=3
# when applying for a connection, if it is detected that the connection is idle longer than time Between Eviction Runs Millis,
# validation Query is performed to check whether the connection is valid
spring.datasource.testWhileIdle=true
#execute validation to check if the connection is valid when applying for a connection
spring.datasource.testOnBorrow=true
#execute validation to check if the connection is valid when the connection is returned
spring.datasource.testOnReturn=false
spring.datasource.defaultAutoCommit=true
spring.datasource.keepAlive=true
# open PSCache, specify count PSCache for every connection
spring.datasource.poolPreparedStatements=true
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
```
## ssh免密配置
在部署机器和其他安装机器上配置ssh免密登录,如果要在部署机上安装调度,需要配置本机免密登录自己
- [将 **主机器** 和各个其它机器SSH打通](http://geek.analysys.cn/topic/113)
### escheduler-server
## 部署
master配置文件
### 1. 修改安装目录权限
- master.properties
- 安装目录如下:
```
# master execute thread num
master.exec.threads=100
# master execute task number in parallel
master.exec.task.number=20
# master heartbeat interval
master.heartbeat.interval=10
# master commit task retry times
master.task.commit.retryTimes=5
# master commit task interval
master.task.commit.interval=100
# only less than cpu avg load, master server can work. default value : the number of cpu cores * 2
master.max.cpuload.avg=10
bin
conf
install.sh
lib
script
sql
# only larger than reserved memory, master server can work. default value : physical memory * 1/10, unit is G.
master.reserved.memory=1
```
- 修改权限(deployUser修改为对应部署用户)
`sudo chown -R deployUser:deployUser *`
### 2. 修改环境变量文件
worker配置文件
- 根据业务需求,修改conf/env/目录下的**escheduler_env.py**,**.escheduler_env.sh**两个文件中的环境变量
- worker.properties
### 3. 修改部署参数
```
# worker execute thread num
worker.exec.threads=100
- 修改 **install.sh**中的参数,替换成自身业务所需的值
# worker heartbeat interval
worker.heartbeat.interval=10
- 如果使用hdfs相关功能,需要拷贝**hdfs-site.xml**和**core-site.xml**到conf目录下
# submit the number of tasks at a time
worker.fetch.task.num = 10
### 4. 一键部署
- 安装zookeeper工具
# only less than cpu avg load, worker server can work. default value : the number of cpu cores * 2
worker.max.cpuload.avg=10
# only larger than reserved memory, worker server can work. default value : physical memory * 1/6, unit is G.
worker.reserved.memory=1
```
`pip install kazoo`
- 切换到部署用户,一键部署
### escheduler-api
`sh install.sh`
web配置文件
- application.properties
- jps查看服务是否启动
```aidl
MasterServer ----- master服务
WorkerServer ----- worker服务
LoggerServer ----- logger服务
ApiApplicationServer ----- api服务
AlertServer ----- alert服务
```
# server port
server.port=12345
# session config
server.session.timeout=7200
server.context-path=/escheduler/
# file size limit for upload
spring.http.multipart.max-file-size=1024MB
spring.http.multipart.max-request-size=1024MB
## 日志查看
日志统一存放于指定文件夹内
# post content
server.max-http-post-size=5000000
```日志路径
logs/
├── escheduler-alert-server.log
├── escheduler-master-server.log
|—— escheduler-worker-server.log
|—— escheduler-api-server.log
|—— escheduler-logger-server.log
```
## 伪分布式部署
### 1,创建部署用户
如上 **创建部署用户**
### 2,根据实际需求来创建HDFS根路径
根据 **common/common.properties****hdfs.startup.state** 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 **owner** 修改为**部署用户**,否则忽略此步骤
### 3,项目编译
如上进行 **项目编译**
### 4,修改配置文件
根据 **配置文件说明** 修改配置文件和 **环境变量** 文件
### 5,创建目录并将环境变量文件复制到指定目录
- 创建 **common/common.properties** 下的data.basedir.path、data.download.basedir.path和process.exec.basepath路径
- 将**.escheduler_env.sh** 和 **escheduler_env.py** 两个环境变量文件复制到 **common/common.properties**配置的**escheduler.env.path****escheduler.env.py** 的目录下,并将 **owner** 修改为**部署用户**
### 6,启停服务
## 启停服务
* 启停Master
@ -500,68 +178,3 @@ sh ./bin/escheduler-daemon.sh start alert-server
sh ./bin/escheduler-daemon.sh stop alert-server
```
## 分布式部署
### 1,创建部署用户
- 在需要部署调度的机器上如上 **创建部署用户**
- [将 **主机器** 和各个其它机器SSH打通](https://blog.csdn.net/thinkmore1314/article/details/22489203)
### 2,根据实际需求来创建HDFS根路径
根据 **common/common.properties****hdfs.startup.state** 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 **owner** 修改为**部署用户**,否则忽略此步骤
### 3,项目编译
如上进行 **项目编译**
### 4,将环境变量文件复制到指定目录
将**.escheduler_env.sh** 和 **escheduler_env.py** 两个环境变量文件复制到 **common/common.properties**配置的**escheduler.env.path****escheduler.env.py** 的目录下,并将 **owner** 修改为**部署用户**
### 5,修改 install.sh
修改 install.sh 中变量的值,替换成自身业务所需的值
### 6,一键部署
- 安装 pip install kazoo
- 安装目录如下:
```
bin
conf
escheduler-1.0.0-SNAPSHOT.tar.gz
install.sh
lib
monitor_server.py
script
sql
```
- 使用部署用户 sh install.sh 一键部署
- 注意:scp_hosts.sh 里 `tar -zxvf $workDir/../escheduler-1.0.0.tar.gz -C $installPath` 中的版本号(1.0.0)需要执行前手动替换成对应的版本号
## 服务监控
monitor_server.py 脚本是监听,master和worker服务挂掉重启的脚本
注意:在全部服务都启动之后启动
nohup python -u monitor_server.py > nohup.out 2>&1 &
## 日志查看
日志统一存放于指定文件夹内
```日志路径
logs/
├── escheduler-alert-server.log
├── escheduler-master-server.log
|—— escheduler-worker-server.log
|—— escheduler-api-server.log
|—— escheduler-logger-server.log
```

115
install.sh

@ -47,8 +47,57 @@ mysqlUserName="xx"
# mysql 密码
mysqlPassword="xx"
# conf/config/install_config.conf配置
# 安装路径,不要当前路径(pwd)一样
installPath="/data1_1T/escheduler"
# 部署用户
deployUser="escheduler"
# zk集群
zkQuorum="192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181"
# 安装hosts
ips="ark0,ark1,ark2,ark3,ark4"
# conf/config/run_config.conf配置
# 运行Master的机器
masters="ark0,ark1"
# 运行Worker的机器
workers="ark2,ark3,ark4"
# 运行Alert的机器
alertServer="ark3"
# 运行Api的机器
apiServers="ark1"
# alert配置
# 邮件协议
mailProtocol="SMTP"
# 邮件服务host
mailServerHost="smtp.exmail.qq.com"
# 邮件服务端口
mailServerPort="25"
# 发送人
mailSender="xxxxxxxxxx"
# 发送人密码
mailPassword="xxxxxxxxxx"
# 下载Excel路径
xlsFilePath="/tmp/xls"
# hadoop 配置
# 是否启动hdfs,如果启动则为true,需要配置以下hadoop相关参数;
# 不启动设置为false,如果为false,以下配置不需要修改
hdfsStartupSate="false"
# namenode地址,支持HA,需要将core-site.xml和hdfs-site.xml放到conf目录下
namenodeFs="hdfs://mycluster:8020"
@ -58,6 +107,8 @@ yarnHaIps="192.168.xx.xx,192.168.xx.xx"
# 如果是单 resourcemanager,只需要配置一个主机名称,如果是resourcemanager HA,则默认配置就好
singleYarnIp="ark1"
# hdfs根路径,根路径的owner必须是部署用户
hdfsPath="/escheduler"
# common 配置
# 程序路径
@ -69,17 +120,11 @@ downloadPath="/tmp/escheduler/download"
# 任务执行路径
execPath="/tmp/escheduler/exec"
# hdfs根路径
hdfsPath="/escheduler"
# 是否启动hdfs,如果启动则为true,不启动设置为false
hdfsStartupSate="true"
# SHELL环境变量路径
shellEnvPath="/opt/.escheduler_env.sh"
shellEnvPath="$installPath/conf/env/.escheduler_env.sh"
# Python换将变量路径
pythonEnvPath="/opt/escheduler_env.py"
pythonEnvPath="$installPath/conf/env/escheduler_env.py"
# 资源文件的后缀
resSuffixs="txt,log,sh,conf,cfg,py,java,sql,hql,xml"
@ -87,11 +132,7 @@ resSuffixs="txt,log,sh,conf,cfg,py,java,sql,hql,xml"
# 开发状态,如果是true,对于SHELL脚本可以在execPath目录下查看封装后的SHELL脚本,如果是false则执行完成直接删除
devState="true"
# zk 配置
# zk集群
zkQuorum="192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181"
# zk根目录
zkRoot="/escheduler"
@ -168,7 +209,6 @@ workerMaxCupLoadAvg="10"
# worker预留内存,用来判断master是否还有执行能力
workerReservedMemory="1"
# api 配置
# api 服务端口
apiServerPort="12345"
@ -188,53 +228,6 @@ springMaxRequestSize="1024MB"
# api 最大post请求大小
apiMaxHttpPostSize="5000000"
# alert配置
# 邮件协议
mailProtocol="SMTP"
# 邮件服务host
mailServerHost="smtp.exmail.qq.com"
# 邮件服务端口
mailServerPort="25"
# 发送人
mailSender="xxxxxxxxxx"
# 发送人密码
mailPassword="xxxxxxxxxx"
# 下载Excel路径
xlsFilePath="/opt/xls"
# conf/config/install_config.conf配置
# 安装路径
installPath="/data1_1T/escheduler"
# 部署用户
deployUser="escheduler"
# 安装hosts
ips="ark0,ark1,ark2,ark3,ark4"
# conf/config/run_config.conf配置
# 运行Master的机器
masters="ark0,ark1"
# 运行Worker的机器
workers="ark2,ark3,ark4"
# 运行Alert的机器
alertServer="ark3"
# 运行Api的机器
apiServers="ark1"
# 1,替换文件
echo "1,替换文件"
sed -i ${txt} "s#spring.datasource.url.*#spring.datasource.url=jdbc:mysql://${mysqlHost}/${mysqlDb}?characterEncoding=UTF-8#g" conf/dao/data_source.properties
@ -317,8 +310,6 @@ sed -i ${txt} "s#alertServer.*#alertServer=${alertServer}#g" conf/config/run_con
sed -i ${txt} "s#apiServers.*#apiServers=${apiServers}#g" conf/config/run_config.conf
# 2,创建目录
echo "2,创建目录"

0
monitor_server.py → script/monitor_server.py

2
script/scp_hosts.sh

@ -5,8 +5,6 @@ workDir=`cd ${workDir};pwd`
source $workDir/../conf/config/run_config.conf
source $workDir/../conf/config/install_config.conf
tar -zxvf $workDir/../EasyScheduler-1.0.0.tar.gz -C $installPath
hostsArr=(${ips//,/ })
for host in ${hostsArr[@]}
do

Loading…
Cancel
Save