帆软使用的第三方框架。
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

931 lines
30 KiB

/*
* (c) the authors Licensed under the Apache License, Version 2.0.
*/
package com.fr.third.bitmap.roaringbitmap;
/**
* Various useful methods for roaring bitmaps.
*/
public final class Util {
/**
* optimization flag: whether to use hybrid binary search: hybrid formats
* combine a binary search with a sequential search
*/
public static boolean USE_HYBRID_BINSEARCH = true;
/**
* Private constructor to prevent instantiation of utility class
*/
private Util() {
}
/**
* Find the smallest integer larger than pos such that array[pos]>= min. If none can be found,
* return length. Based on code by O. Kaser.
*
* @param array array to search within
* @param pos starting position of the search
* @param length length of the array to search
* @param min minimum value
* @return x greater than pos such that array[pos] is at least as large as min, pos is is equal to
* length if it is not possible.
*/
public static int advanceUntil(short[] array, int pos, int length, short min) {
int lower = pos + 1;
// special handling for a possibly common sequential case
if (lower >= length || toIntUnsigned(array[lower]) >= toIntUnsigned(min)) {
return lower;
}
int spansize = 1; // could set larger
// bootstrap an upper limit
while (lower + spansize < length
&& toIntUnsigned(array[lower + spansize]) < toIntUnsigned(min)) {
spansize *= 2; // hoping for compiler will reduce to
}
// shift
int upper = (lower + spansize < length) ? lower + spansize : length - 1;
// maybe we are lucky (could be common case when the seek ahead
// expected
// to be small and sequential will otherwise make us look bad)
if (array[upper] == min) {
return upper;
}
if (toIntUnsigned(array[upper]) < toIntUnsigned(min)) {// means
// array
// has no
// item
// >= min
// pos = array.length;
return length;
}
// we know that the next-smallest span was too small
lower += (spansize / 2);
// else begin binary search
// invariant: array[lower]<min && array[upper]>min
while (lower + 1 != upper) {
int mid = (lower + upper) / 2;
short arraymid = array[mid];
if (arraymid == min) {
return mid;
} else if (toIntUnsigned(arraymid) < toIntUnsigned(min)) {
lower = mid;
} else {
upper = mid;
}
}
return upper;
}
protected static int branchyUnsignedBinarySearch(final short[] array, final int begin,
final int end, final short k) {
int ikey = toIntUnsigned(k);
// next line accelerates the possibly common case where the value would
// be inserted at the end
if ((end > 0) && (toIntUnsigned(array[end - 1]) < ikey)) {
return -end - 1;
}
int low = begin;
int high = end - 1;
while (low <= high) {
final int middleIndex = (low + high) >>> 1;
final int middleValue = toIntUnsigned(array[middleIndex]);
if (middleValue < ikey) {
low = middleIndex + 1;
} else if (middleValue > ikey) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return -(low + 1);
}
/**
* Compares the two specified {@code short} values, treating them as unsigned values between
* {@code 0} and {@code 2^16 - 1} inclusive.
*
* @param a the first unsigned {@code short} to compare
* @param b the second unsigned {@code short} to compare
* @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
* greater than {@code b}; or zero if they are equal
*/
public static int compareUnsigned(short a, short b) {
return toIntUnsigned(a) - toIntUnsigned(b);
}
/**
* Compute the bitwise AND between two long arrays and write the set bits in the container.
*
* @param container where we write
* @param bitmap1 first bitmap
* @param bitmap2 second bitmap
*/
public static void fillArrayAND(final short[] container, final long[] bitmap1,
final long[] bitmap2) {
int pos = 0;
if (bitmap1.length != bitmap2.length) {
throw new IllegalArgumentException("not supported");
}
for (int k = 0; k < bitmap1.length; ++k) {
long bitset = bitmap1[k] & bitmap2[k];
while (bitset != 0) {
long t = bitset & -bitset;
container[pos++] = (short) (k * 64 + Long.bitCount(t - 1));
bitset ^= t;
}
}
}
/**
* Compute the bitwise ANDNOT between two long arrays and write the set bits in the container.
*
* @param container where we write
* @param bitmap1 first bitmap
* @param bitmap2 second bitmap
*/
public static void fillArrayANDNOT(final short[] container, final long[] bitmap1,
final long[] bitmap2) {
int pos = 0;
if (bitmap1.length != bitmap2.length) {
throw new IllegalArgumentException("not supported");
}
for (int k = 0; k < bitmap1.length; ++k) {
long bitset = bitmap1[k] & (~bitmap2[k]);
while (bitset != 0) {
long t = bitset & -bitset;
container[pos++] = (short) (k * 64 + Long.bitCount(t - 1));
bitset ^= t;
}
}
}
/**
* Compute the bitwise XOR between two long arrays and write the set bits in the container.
*
* @param container where we write
* @param bitmap1 first bitmap
* @param bitmap2 second bitmap
*/
public static void fillArrayXOR(final short[] container, final long[] bitmap1,
final long[] bitmap2) {
int pos = 0;
if (bitmap1.length != bitmap2.length) {
throw new IllegalArgumentException("not supported");
}
for (int k = 0; k < bitmap1.length; ++k) {
long bitset = bitmap1[k] ^ bitmap2[k];
while (bitset != 0) {
long t = bitset & -bitset;
container[pos++] = (short) (k * 64 + Long.bitCount(t - 1));
bitset ^= t;
}
}
}
/**
* flip bits at start, start+1,..., end-1
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
*/
public static void flipBitmapRange(long[] bitmap, int start, int end) {
if (start == end) {
return;
}
int firstword = start / 64;
int endword = (end - 1) / 64;
bitmap[firstword] ^= ~(~0L << start);
for (int i = firstword; i < endword; i++) {
bitmap[i] = ~bitmap[i];
}
bitmap[endword] ^= ~0L >>> -end;
}
/**
* Hamming weight of the 64-bit words involved in the range
* start, start+1,..., end-1
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
* @return the hamming weight
*/
public static int cardinalityInBitmapWordRange(long[] bitmap, int start, int end) {
if (start == end) {
return 0;
}
int firstword = start / 64;
int endword = (end - 1) / 64;
int answer = 0;
for (int i = firstword; i <= endword; i++) {
answer += Long.bitCount(bitmap[i]);
}
return answer;
}
protected static short highbits(int x) {
return (short) (x >>> 16);
}
protected static short highbits(long x) {
return (short) (x >>> 16);
}
// starts with binary search and finishes with a sequential search
protected static int hybridUnsignedBinarySearch(final short[] array, final int begin,
final int end, final short k) {
int ikey = toIntUnsigned(k);
// next line accelerates the possibly common case where the value would
// be inserted at the end
if ((end > 0) && (toIntUnsigned(array[end - 1]) < ikey)) {
return -end - 1;
}
int low = begin;
int high = end - 1;
// 32 in the next line matches the size of a cache line
while (low + 32 <= high) {
final int middleIndex = (low + high) >>> 1;
final int middleValue = toIntUnsigned(array[middleIndex]);
if (middleValue < ikey) {
low = middleIndex + 1;
} else if (middleValue > ikey) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
// we finish the job with a sequential search
int x = low;
for (; x <= high; ++x) {
final int val = toIntUnsigned(array[x]);
if (val >= ikey) {
if (val == ikey) {
return x;
}
break;
}
}
return -(x + 1);
}
protected static short lowbits(int x) {
return (short) (x & 0xFFFF);
}
protected static short lowbits(long x) {
return (short) (x & 0xFFFF);
}
protected static short maxLowBit() {
return (short) 0xFFFF;
}
protected static int maxLowBitAsInteger() {
return 0xFFFF;
}
/**
* clear bits at start, start+1,..., end-1
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
*/
public static void resetBitmapRange(long[] bitmap, int start, int end) {
if (start == end) {
return;
}
int firstword = start / 64;
int endword = (end - 1) / 64;
if (firstword == endword) {
bitmap[firstword] &= ~((~0L << start) & (~0L >>> -end));
return;
}
bitmap[firstword] &= ~(~0L << start);
for (int i = firstword + 1; i < endword; i++) {
bitmap[i] = 0;
}
bitmap[endword] &= ~(~0L >>> -end);
}
/**
* Given a word w, return the position of the jth true bit.
*
* @param w word
* @param j index
* @return position of jth true bit in w
*/
public static int select(long w, int j) {
int seen = 0;
// Divide 64bit
int part = (int) (w & 0xFFFFFFFF);
int n = Integer.bitCount(part);
if (n <= j) {
part = (int) (w >>> 32);
seen += 32;
j -= n;
}
int ww = part;
// Divide 32bit
part = ww & 0xFFFF;
n = Integer.bitCount(part);
if (n <= j) {
part = ww >>> 16;
seen += 16;
j -= n;
}
ww = part;
// Divide 16bit
part = ww & 0xFF;
n = Integer.bitCount(part);
if (n <= j) {
part = ww >>> 8;
seen += 8;
j -= n;
}
ww = part;
// Lookup in final byte
int counter;
for (counter = 0; counter < 8; counter++) {
j -= (ww >>> counter) & 1;
if (j < 0) {
break;
}
}
return seen + counter;
}
/**
* set bits at start, start+1,..., end-1
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
*/
public static void setBitmapRange(long[] bitmap, int start, int end) {
if (start == end) {
return;
}
int firstword = start / 64;
int endword = (end - 1) / 64;
if (firstword == endword) {
bitmap[firstword] |= (~0L << start) & (~0L >>> -end);
return;
}
bitmap[firstword] |= ~0L << start;
for (int i = firstword + 1; i < endword; i++) {
bitmap[i] = ~0L;
}
bitmap[endword] |= ~0L >>> -end;
}
/**
* set bits at start, start+1,..., end-1 and report the
* cardinality change
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
* @return cardinality change
*/
public static int setBitmapRangeAndCardinalityChange(long[] bitmap, int start, int end) {
int cardbefore = cardinalityInBitmapWordRange(bitmap, start, end);
setBitmapRange(bitmap, start, end);
int cardafter = cardinalityInBitmapWordRange(bitmap, start, end);
return cardafter - cardbefore;
}
/**
* flip bits at start, start+1,..., end-1 and report the
* cardinality change
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
* @return cardinality change
*/
public static int flipBitmapRangeAndCardinalityChange(long[] bitmap, int start, int end) {
int cardbefore = cardinalityInBitmapWordRange(bitmap, start, end);
flipBitmapRange(bitmap, start, end);
int cardafter = cardinalityInBitmapWordRange(bitmap, start, end);
return cardafter - cardbefore;
}
/**
* reset bits at start, start+1,..., end-1 and report the
* cardinality change
*
* @param bitmap array of words to be modified
* @param start first index to be modified (inclusive)
* @param end last index to be modified (exclusive)
* @return cardinality change
*/
public static int resetBitmapRangeAndCardinalityChange(long[] bitmap, int start, int end) {
int cardbefore = cardinalityInBitmapWordRange(bitmap, start, end);
resetBitmapRange(bitmap, start, end);
int cardafter = cardinalityInBitmapWordRange(bitmap, start, end);
return cardafter - cardbefore;
}
protected static int toIntUnsigned(short x) {
return x & 0xFFFF;
}
/**
* Look for value k in array in the range [begin,end). If the value is found, return its index. If
* not, return -(i+1) where i is the index where the value would be inserted. The array is assumed
* to contain sorted values where shorts are interpreted as unsigned integers.
*
* @param array array where we search
* @param begin first index (inclusive)
* @param end last index (exclusive)
* @param k value we search for
* @return count
*/
public static int unsignedBinarySearch(final short[] array, final int begin, final int end,
final short k) {
if (USE_HYBRID_BINSEARCH) {
return hybridUnsignedBinarySearch(array, begin, end, k);
} else {
return branchyUnsignedBinarySearch(array, begin, end, k);
}
}
/**
* Compute the difference between two sorted lists and write the result to the provided output
* array
*
* @param set1 first array
* @param length1 length of first array
* @param set2 second array
* @param length2 length of second array
* @param buffer output array
* @return cardinality of the difference
*/
public static int unsignedDifference(final short[] set1, final int length1, final short[] set2,
final int length2, final short[] buffer) {
int pos = 0;
int k1 = 0, k2 = 0;
if (0 == length2) {
System.arraycopy(set1, 0, buffer, 0, length1);
return length1;
}
if (0 == length1) {
return 0;
}
short s1 = set1[k1];
short s2 = set2[k2];
while (true) {
if (toIntUnsigned(s1) < toIntUnsigned(s2)) {
buffer[pos++] = s1;
++k1;
if (k1 >= length1) {
break;
}
s1 = set1[k1];
} else if (toIntUnsigned(s1) == toIntUnsigned(s2)) {
++k1;
++k2;
if (k1 >= length1) {
break;
}
if (k2 >= length2) {
System.arraycopy(set1, k1, buffer, pos, length1 - k1);
return pos + length1 - k1;
}
s1 = set1[k1];
s2 = set2[k2];
} else {// if (val1>val2)
++k2;
if (k2 >= length2) {
System.arraycopy(set1, k1, buffer, pos, length1 - k1);
return pos + length1 - k1;
}
s2 = set2[k2];
}
}
return pos;
}
/**
* Compute the difference between two sorted lists and write the result to the provided output
* array
*
* @param set1 first array
* @param set2 second array
* @param buffer output array
* @return cardinality of the difference
*/
public static int unsignedDifference(ShortIterator set1, ShortIterator set2,
final short[] buffer) {
int pos = 0;
if (!set2.hasNext()) {
while (set1.hasNext()) {
buffer[pos++] = set1.next();
}
return pos;
}
if (!set1.hasNext()) {
return 0;
}
short v1 = set1.next();
short v2 = set2.next();
while (true) {
if (toIntUnsigned(v1) < toIntUnsigned(v2)) {
buffer[pos++] = v1;
if (!set1.hasNext()) {
return pos;
}
v1 = set1.next();
} else if (v1 == v2) {
if (!set1.hasNext()) {
break;
}
if (!set2.hasNext()) {
while (set1.hasNext()) {
buffer[pos++] = set1.next();
}
return pos;
}
v1 = set1.next();
v2 = set2.next();
} else {// if (val1>val2)
if (!set2.hasNext()) {
buffer[pos++] = v1;
while (set1.hasNext()) {
buffer[pos++] = set1.next();
}
return pos;
}
v2 = set2.next();
}
}
return pos;
}
/**
* Compute the exclusive union of two sorted lists and write the result to the provided output
* array
*
* @param set1 first array
* @param length1 length of first array
* @param set2 second array
* @param length2 length of second array
* @param buffer output array
* @return cardinality of the exclusive union
*/
public static int unsignedExclusiveUnion2by2(final short[] set1, final int length1,
final short[] set2, final int length2, final short[] buffer) {
int pos = 0;
int k1 = 0, k2 = 0;
if (0 == length2) {
System.arraycopy(set1, 0, buffer, 0, length1);
return length1;
}
if (0 == length1) {
System.arraycopy(set2, 0, buffer, 0, length2);
return length2;
}
short s1 = set1[k1];
short s2 = set2[k2];
while (true) {
if (toIntUnsigned(s1) < toIntUnsigned(s2)) {
buffer[pos++] = s1;
++k1;
if (k1 >= length1) {
System.arraycopy(set2, k2, buffer, pos, length2 - k2);
return pos + length2 - k2;
}
s1 = set1[k1];
} else if (toIntUnsigned(s1) == toIntUnsigned(s2)) {
++k1;
++k2;
if (k1 >= length1) {
System.arraycopy(set2, k2, buffer, pos, length2 - k2);
return pos + length2 - k2;
}
if (k2 >= length2) {
System.arraycopy(set1, k1, buffer, pos, length1 - k1);
return pos + length1 - k1;
}
s1 = set1[k1];
s2 = set2[k2];
} else {// if (val1>val2)
buffer[pos++] = s2;
++k2;
if (k2 >= length2) {
System.arraycopy(set1, k1, buffer, pos, length1 - k1);
return pos + length1 - k1;
}
s2 = set2[k2];
}
}
// return pos;
}
/**
* Intersect two sorted lists and write the result to the provided output array
*
* @param set1 first array
* @param length1 length of first array
* @param set2 second array
* @param length2 length of second array
* @param buffer output array
* @return cardinality of the intersection
*/
public static int unsignedIntersect2by2(final short[] set1, final int length1, final short[] set2,
final int length2, final short[] buffer) {
if (set1.length * 64 < set2.length) {
return unsignedOneSidedGallopingIntersect2by2(set1, length1, set2, length2, buffer);
} else if (set2.length * 64 < set1.length) {
return unsignedOneSidedGallopingIntersect2by2(set2, length2, set1, length1, buffer);
} else {
return unsignedLocalIntersect2by2(set1, length1, set2, length2, buffer);
}
}
/**
* Checks if two arrays intersect
*
* @param set1 first array
* @param length1 length of first array
* @param set2 second array
* @param length2 length of second array
* @return true if they intersect
*/
public static boolean unsignedIntersects(short[] set1, int length1, short[] set2, int length2) {
// galloping might be faster, but we do not expect this function to be slow
if ((0 == length1) || (0 == length2)) {
return false;
}
int k1 = 0;
int k2 = 0;
short s1 = set1[k1];
short s2 = set2[k2];
mainwhile:
while (true) {
if (toIntUnsigned(s2) < toIntUnsigned(s1)) {
do {
++k2;
if (k2 == length2) {
break mainwhile;
}
s2 = set2[k2];
} while (toIntUnsigned(s2) < toIntUnsigned(s1));
}
if (toIntUnsigned(s1) < toIntUnsigned(s2)) {
do {
++k1;
if (k1 == length1) {
break mainwhile;
}
s1 = set1[k1];
} while (toIntUnsigned(s1) < toIntUnsigned(s2));
} else {
return true;
}
}
return false;
}
protected static int unsignedLocalIntersect2by2(final short[] set1, final int length1,
final short[] set2, final int length2, final short[] buffer) {
if ((0 == length1) || (0 == length2)) {
return 0;
}
int k1 = 0;
int k2 = 0;
int pos = 0;
short s1 = set1[k1];
short s2 = set2[k2];
mainwhile:
while (true) {
int v1 = toIntUnsigned(s1);
int v2 = toIntUnsigned(s2);
if (v2 < v1) {
do {
++k2;
if (k2 == length2) {
break mainwhile;
}
s2 = set2[k2];
v2 = toIntUnsigned(s2);
} while (v2 < v1);
}
if (v1 < v2) {
do {
++k1;
if (k1 == length1) {
break mainwhile;
}
s1 = set1[k1];
v1 = toIntUnsigned(s1);
} while (v1 < v2);
} else {
// (set2[k2] == set1[k1])
buffer[pos++] = s1;
++k1;
if (k1 == length1) {
break;
}
++k2;
if (k2 == length2) {
break;
}
s1 = set1[k1];
s2 = set2[k2];
}
}
return pos;
}
/**
* Compute the cardinality of the intersection
*
* @param set1 first set
* @param length1 how many values to consider in the first set
* @param set2 second set
* @param length2 how many values to consider in the second set
* @return cardinality of the intersection
*/
public static int unsignedLocalIntersect2by2Cardinality(final short[] set1, final int length1,
final short[] set2, final int length2) {
if ((0 == length1) || (0 == length2)) {
return 0;
}
int k1 = 0;
int k2 = 0;
int pos = 0;
short s1 = set1[k1];
short s2 = set2[k2];
mainwhile:
while (true) {
int v1 = toIntUnsigned(s1);
int v2 = toIntUnsigned(s2);
if (v2 < v1) {
do {
++k2;
if (k2 == length2) {
break mainwhile;
}
s2 = set2[k2];
v2 = toIntUnsigned(s2);
} while (v2 < v1);
}
if (v1 < v2) {
do {
++k1;
if (k1 == length1) {
break mainwhile;
}
s1 = set1[k1];
v1 = toIntUnsigned(s1);
} while (v1 < v2);
} else {
// (set2[k2] == set1[k1])
pos++;
++k1;
if (k1 == length1) {
break;
}
++k2;
if (k2 == length2) {
break;
}
s1 = set1[k1];
s2 = set2[k2];
}
}
return pos;
}
protected static int unsignedOneSidedGallopingIntersect2by2(final short[] smallSet,
final int smallLength, final short[] largeSet, final int largeLength, final short[] buffer) {
if (0 == smallLength) {
return 0;
}
int k1 = 0;
int k2 = 0;
int pos = 0;
short s1 = largeSet[k1];
short s2 = smallSet[k2];
while (true) {
if (toIntUnsigned(s1) < toIntUnsigned(s2)) {
k1 = advanceUntil(largeSet, k1, largeLength, s2);
if (k1 == largeLength) {
break;
}
s1 = largeSet[k1];
}
if (toIntUnsigned(s2) < toIntUnsigned(s1)) {
++k2;
if (k2 == smallLength) {
break;
}
s2 = smallSet[k2];
} else {
// (set2[k2] == set1[k1])
buffer[pos++] = s2;
++k2;
if (k2 == smallLength) {
break;
}
s2 = smallSet[k2];
k1 = advanceUntil(largeSet, k1, largeLength, s2);
if (k1 == largeLength) {
break;
}
s1 = largeSet[k1];
}
}
return pos;
}
/**
* Unite two sorted lists and write the result to the provided output array
*
* @param set1 first array
* @param length1 length of first array
* @param set2 second array
* @param length2 length of second array
* @param buffer output array
* @return cardinality of the union
*/
public static int unsignedUnion2by2(final short[] set1, final int length1, final short[] set2,
final int length2, final short[] buffer) {
int pos = 0;
int k1 = 0, k2 = 0;
if (0 == length2) {
System.arraycopy(set1, 0, buffer, 0, length1);
return length1;
}
if (0 == length1) {
System.arraycopy(set2, 0, buffer, 0, length2);
return length2;
}
short s1 = set1[k1];
short s2 = set2[k2];
while (true) {
int v1 = toIntUnsigned(s1);
int v2 = toIntUnsigned(s2);
if (v1 < v2) {
buffer[pos++] = s1;
++k1;
if (k1 >= length1) {
System.arraycopy(set2, k2, buffer, pos, length2 - k2);
return pos + length2 - k2;
}
s1 = set1[k1];
} else if (v1 == v2) {
buffer[pos++] = s1;
++k1;
++k2;
if (k1 >= length1) {
System.arraycopy(set2, k2, buffer, pos, length2 - k2);
return pos + length2 - k2;
}
if (k2 >= length2) {
System.arraycopy(set1, k1, buffer, pos, length1 - k1);
return pos + length1 - k1;
}
s1 = set1[k1];
s2 = set2[k2];
} else {// if (set1[k1]>set2[k2])
buffer[pos++] = s2;
++k2;
if (k2 >= length2) {
System.arraycopy(set1, k1, buffer, pos, length1 - k1);
return pos + length1 - k1;
}
s2 = set2[k2];
}
}
// return pos;
}
}