package com.fr.third.JAI;
/*
* Copyright (c) 2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* -Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* -Redistribution in binary form must reproduct the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* You acknowledge that Software is not designed,licensed or intended for use in
* the design, construction, operation or maintenance of any nuclear facility.
*/
/**
* An instance of ImageDecodeParam
for decoding images in
* the PNG format.
*
* PNGDecodeParam
allows several aspects of the decoding
* process for PNG images to be controlled. By default, decoding produces
* output images with the following properties:
*
*
Images with a bit depth of 8 or less use a
* DataBufferByte
to hold the pixel data. 16-bit images
* use a DataBufferUShort
.
*
*
Palette color images and non-transparent grayscale images with
* bit depths of 1, 2, or 4 will have a
* MultiPixelPackedSampleModel
and an
* IndexColorModel
. For palette color images, the
* ColorModel
palette contains the red, green, blue, and
* optionally alpha palette information. For grayscale images, the
* palette is used to expand the pixel data to cover the range 0-255.
* The pixels are stored packed 8, 4, or 2 to the byte.
*
*
All other images are stored using a
* PixelInterleavedSampleModel
with each sample of a pixel
* occupying its own byte
or short
within
* the DataBuffer
. A ComponentColorModel
is
* used which simply extracts the red, green, blue, gray, and/or alpha
* information from separate DataBuffer
entries.
*
*
Five aspects of this process may be altered by means of methods * in this class. * *
setSuppressAlpha()
prevents an alpha channel
* from appearing in the output.
*
*
setExpandPalette()
turns palette-color images into
* 3-or 4-channel full-color images.
*
*
setOutput8BitGray()
causes 1, 2, or 4 bit
* grayscale images to be output in 8-bit form, using a
* ComponentSampleModel
and
* ComponentColorModel
.
*
*
setDecodingExponent()
causes the output image to be
* gamma-corrected using a supplied output gamma value.
*
*
setExpandGrayAlpha()
causes 2-channel gray/alpha
* (GA) images to be output as full-color (GGGA) images, which may
* simplify further processing and display.
*
*
This class is not a committed part of the JAI API. It may
* be removed or changed in future releases of JAI.
*/
public class PNGDecodeParam implements ImageDecodeParam {
/**
* Constructs a default instance of PNGDecodeParam
.
*/
public PNGDecodeParam() {}
private boolean suppressAlpha = false;
/**
* Returns true
if alpha (transparency) will
* be prevented from appearing in the output.
*/
public boolean getSuppressAlpha() {
return suppressAlpha;
}
/**
* If set, no alpha (transparency) channel will appear in the
* output image.
*
*
The default is to allow transparency to appear in the * output image. */ public void setSuppressAlpha(boolean suppressAlpha) { this.suppressAlpha = suppressAlpha; } private boolean expandPalette = false; /** * Returns true if palette-color images will be expanded to * produce full-color output. */ public boolean getExpandPalette() { return expandPalette; } /** * If set, palette color images (PNG color type 3) will * be decoded into full-color (RGB) output images. The output * image may have 3 or 4 channels, depending on the presence of * transparency information. * *
The default is to output palette images using a single
* channel. The palette information is used to construct the
* output image's ColorModel
.
*/
public void setExpandPalette(boolean expandPalette) {
this.expandPalette = expandPalette;
}
private boolean output8BitGray = false;
/**
* Returns the current value of the 8-bit gray output parameter.
*/
public boolean getOutput8BitGray() {
return output8BitGray;
}
/**
* If set, grayscale images with a bit depth less than 8
* (1, 2, or 4) will be output in 8 bit form. The output values
* will occupy the full 8-bit range. For example, gray values
* 0, 1, 2, and 3 of a 2-bit image will be output as
* 0, 85, 170, and 255.
*
*
The decoding of non-grayscale images and grayscale images * with a bit depth of 8 or 16 are unaffected by this setting. * *
The default is not to perform expansion. Grayscale images
* with a depth of 1, 2, or 4 bits will be represented using
* a MultiPixelPackedSampleModel
and an
* IndexColorModel
.
*/
public void setOutput8BitGray(boolean output8BitGray) {
this.output8BitGray = output8BitGray;
}
private boolean performGammaCorrection = true;
/**
* Returns true
if gamma correction is to be performed
* on the image data. The default is true
.
*
*
If gamma correction is to be performed, the
* getUserExponent()
and
* getDisplayExponent()
methods are used in addition to
* the gamma value stored within the file (or the default value of
* 1/2.2 used if no value is found) to produce a single exponent
* using the formula:
*
* decoding_exponent = user_exponent/(gamma_from_file * display_exponent) **/ public boolean getPerformGammaCorrection() { return performGammaCorrection; } /** * Turns gamma corection of the image data on or off. */ public void setPerformGammaCorrection(boolean performGammaCorrection) { this.performGammaCorrection = performGammaCorrection; } private float userExponent = 1.0F; /** * Returns the current value of the user exponent parameter. * By default, the user exponent is equal to 1.0F. */ public float getUserExponent() { return userExponent; } /** * Sets the user exponent to a given value. The exponent * must be positive. If not, an *
IllegalArgumentException
will be thrown.
*
* The output image pixels will be placed through a transformation * of the form: * *
* sample = integer_sample / (2^bitdepth - 1.0) * decoding_exponent = user_exponent/(gamma_from_file * display_exponent) * output = sample ^ decoding_exponent ** * where
gamma_from_file
is the gamma of the file
* data, as determined by the gAMA
, sRGB,
* and/or iCCP
chunks, and display_exponent
* is the exponent of the intrinsic transfer curve of the display,
* generally 2.2.
*
* Input files which do not specify any gamma are assumed to
* have a gamma of 1/2.2
; such images may be displayed
* on a CRT with an exponent of 2.2 using the default user
* exponent of 1.0.
*
*
The user exponent may be used in order to change the * effective gamma of a file. If a file has a stored gamma of * X, but the decoder believes that the true file gamma is Y, * setting a user exponent of Y/X will produce the same result * as changing the file gamma. * *
This parameter affects the decoding of all image types.
*
* @throws IllegalArgumentException if userExponent
is
* negative.
*/
public void setUserExponent(float userExponent) {
if (userExponent <= 0.0F) {
throw new IllegalArgumentException(JaiI18N.getString("PNGDecodeParam0"));
}
this.userExponent = userExponent;
}
private float displayExponent = 2.2F;
/**
* Returns the current value of the display exponent parameter.
* By default, the display exponent is equal to 2.2F.
*/
public float getDisplayExponent() {
return displayExponent;
}
/**
* Sets the display exponent to a given value. The exponent
* must be positive. If not, an
* IllegalArgumentException
will be thrown.
*
*
The output image pixels will be placed through a transformation * of the form: * *
* sample = integer_sample / (2^bitdepth - 1.0) * decoding_exponent = user_exponent/(gamma_from_file * display_exponent) * output = sample ^ decoding_exponent ** * where
gamma_from_file
is the gamma of the file
* data, as determined by the gAMA
, sRGB,
* and/or iCCP
chunks, and user_exponent
* is an additional user-supplied parameter.
*
* Input files which do not specify any gamma are assumed to
* have a gamma of 1/2.2
; such images should be
* decoding using the default display exponent of 2.2.
*
*
If an image is to be processed further before being displayed, * it may be preferable to set the display exponent to 1.0 in order * to produce a linear output image. * *
This parameter affects the decoding of all image types.
*
* @throws IllegalArgumentException if userExponent
is
* negative.
*/
public void setDisplayExponent(float displayExponent) {
if (displayExponent <= 0.0F) {
throw new IllegalArgumentException(JaiI18N.getString("PNGDecodeParam1"));
}
this.displayExponent = displayExponent;
}
private boolean expandGrayAlpha = false;
/**
* Returns the current setting of the gray/alpha expansion.
*/
public boolean getExpandGrayAlpha() {
return expandGrayAlpha;
}
/**
* If set, images containing one channel of gray and one channel of
* alpha (GA) will be output in a 4-channel format (GGGA). This
* produces output that may be simpler to process and display.
*
*
This setting affects both images of color type 4 (explicit * alpha) and images of color type 0 (grayscale) that contain * transparency information. * *
By default, no expansion is performed.
*/
public void setExpandGrayAlpha(boolean expandGrayAlpha) {
this.expandGrayAlpha = expandGrayAlpha;
}
private boolean generateEncodeParam = false;
private PNGEncodeParam encodeParam = null;
/**
* Returns true
if an instance of
* PNGEncodeParam
will be available after an image
* has been decoded via the getEncodeParam
method.
*/
public boolean getGenerateEncodeParam() {
return generateEncodeParam;
}
/**
* If set, an instance of PNGEncodeParam
will be
* available after an image has been decoded via the
* getEncodeParam
method that encapsulates information
* about the contents of the PNG file. If not set, this information
* will not be recorded and getEncodeParam()
will
* return null
.
*/
public void setGenerateEncodeParam(boolean generateEncodeParam) {
this.generateEncodeParam = generateEncodeParam;
}
/**
* If getGenerateEncodeParam()
is true
,
* this method may be called after decoding has completed, and
* will return an instance of PNGEncodeParam
containing
* information about the contents of the PNG file just decoded.
*/
public PNGEncodeParam getEncodeParam() {
return encodeParam;
}
/**
* Sets the current encoder param instance. This method is
* intended to be called by the PNG decoder and will overwrite the
* current instance returned by getEncodeParam
.
*/
public void setEncodeParam(PNGEncodeParam encodeParam) {
this.encodeParam = encodeParam;
}
}