Browse Source

Merge pull request #182 in CORE/base-third from ~JONAS/base-third:feature/10.0 to feature/10.0

* commit '7c8b7e562f74361336ff81e6a85aacc1fa34c21e':
  上传math3资源文件
  更改math3的gradle
  上传commons-math3
research/11.0
richie 6 years ago
parent
commit
e26c9b2805
  1. 2
      build.third_step1.gradle
  2. 343
      fine-commons-math3/resources/assets/com/fr/third/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties
  3. 1000
      fine-commons-math3/resources/assets/com/fr/third/org/apache/commons/math3/random/new-joe-kuo-6.1000
  4. 58
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/Field.java
  5. 87
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/FieldElement.java
  6. 402
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/RealFieldElement.java
  7. 35
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/BivariateFunction.java
  8. 54
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableMultivariateFunction.java
  9. 38
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorFunction.java
  10. 37
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableUnivariateFunction.java
  11. 38
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableUnivariateMatrixFunction.java
  12. 38
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableUnivariateVectorFunction.java
  13. 806
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/FunctionUtils.java
  14. 45
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/MultivariateFunction.java
  15. 35
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/MultivariateMatrixFunction.java
  16. 35
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/MultivariateVectorFunction.java
  17. 44
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/ParametricUnivariateFunction.java
  18. 86
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/RealFieldUnivariateFunction.java
  19. 35
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/TrivariateFunction.java
  20. 81
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/UnivariateFunction.java
  21. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/UnivariateMatrixFunction.java
  22. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/UnivariateVectorFunction.java
  23. 1820
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/DSCompiler.java
  24. 1195
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/DerivativeStructure.java
  25. 384
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/FiniteDifferencesDifferentiator.java
  26. 65
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/GradientFunction.java
  27. 69
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/JacobianFunction.java
  28. 42
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/MultivariateDifferentiableFunction.java
  29. 43
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/MultivariateDifferentiableVectorFunction.java
  30. 877
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/SparseGradient.java
  31. 43
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateDifferentiableFunction.java
  32. 40
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateDifferentiableMatrixFunction.java
  33. 40
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateDifferentiableVectorFunction.java
  34. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateFunctionDifferentiator.java
  35. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateMatrixFunctionDifferentiator.java
  36. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateVectorFunctionDifferentiator.java
  37. 42
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/package-info.java
  38. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Abs.java
  39. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Acos.java
  40. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Acosh.java
  41. 32
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Add.java
  42. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Asin.java
  43. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Asinh.java
  44. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Atan.java
  45. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Atan2.java
  46. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Atanh.java
  47. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Cbrt.java
  48. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Ceil.java
  49. 60
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Constant.java
  50. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Cos.java
  51. 51
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Cosh.java
  52. 32
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Divide.java
  53. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Exp.java
  54. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Expm1.java
  55. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Floor.java
  56. 259
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Gaussian.java
  57. 183
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/HarmonicOscillator.java
  58. 50
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Identity.java
  59. 52
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Inverse.java
  60. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Log.java
  61. 54
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Log10.java
  62. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Log1p.java
  63. 228
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Logistic.java
  64. 212
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Logit.java
  65. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Max.java
  66. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Min.java
  67. 50
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Minus.java
  68. 32
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Multiply.java
  69. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Pow.java
  70. 63
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Power.java
  71. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Rint.java
  72. 218
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sigmoid.java
  73. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Signum.java
  74. 51
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sin.java
  75. 205
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sinc.java
  76. 51
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sinh.java
  77. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sqrt.java
  78. 101
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/StepFunction.java
  79. 32
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Subtract.java
  80. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Tan.java
  81. 53
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Tanh.java
  82. 33
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Ulp.java
  83. 26
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/package-info.java
  84. 299
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/BaseAbstractUnivariateIntegrator.java
  85. 183
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/IterativeLegendreGaussIntegrator.java
  86. 265
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/LegendreGaussIntegrator.java
  87. 169
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/MidPointIntegrator.java
  88. 142
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/RombergIntegrator.java
  89. 129
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/SimpsonIntegrator.java
  90. 168
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/TrapezoidIntegrator.java
  91. 95
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/UnivariateIntegrator.java
  92. 154
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/BaseRuleFactory.java
  93. 129
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/GaussIntegrator.java
  94. 168
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/GaussIntegratorFactory.java
  95. 177
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/HermiteRuleFactory.java
  96. 215
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java
  97. 140
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/LegendreRuleFactory.java
  98. 103
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/SymmetricGaussIntegrator.java
  99. 22
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/package-info.java
  100. 22
      fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/package-info.java
  101. Some files were not shown because too many files have changed in this diff Show More

2
build.third_step1.gradle

@ -34,6 +34,7 @@ sourceSets{
"${srcDir}/fine-commons-fileupload/src",
"${srcDir}/fine-commons-lang3/src",
"${srcDir}/fine-commons-collections4/src",
"${srcDir}/fine-commons-math3/src",
"${srcDir}/fine-joda/src",
"${srcDir}/fine-j2v8/src"
]
@ -84,6 +85,7 @@ task copyFiles(type:Copy,dependsOn:'compileJava'){
with dataContent.call("${srcDir}/fine-commons-fileupload/src")
with dataContent.call("${srcDir}/fine-commons-lang3/src")
with dataContent.call("${srcDir}/fine-commons-collections4/src")
with dataContent.call("${srcDir}/fine-commons-math3/resources")
with dataContent.call("${srcDir}/fine-joda/src")
with dataContent.call("${srcDir}/fine-j2v8/src")
into "${classesDir}"

343
fine-commons-math3/resources/assets/com/fr/third/org/apache/commons/math3/exception/util/LocalizedFormats_fr.properties

@ -0,0 +1,343 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARGUMENT_OUTSIDE_DOMAIN = argument {0} hors domaine [{1} ; {2}]
ARRAY_SIZE_EXCEEDS_MAX_VARIABLES = la taille de tableau ne devrait pas d\u00e9passer {0}
ARRAY_SIZES_SHOULD_HAVE_DIFFERENCE_1 = les tableaux devraient avoir une diff\u00e9rence de taille de 1 ({0} != {1} + 1)
ARRAY_SUMS_TO_ZERO = somme du tableau nulle
ASSYMETRIC_EIGEN_NOT_SUPPORTED = la d\u00e9composition en valeurs/vecteurs propres de matrices
AT_LEAST_ONE_COLUMN = une matrice doit comporter au moins une colonne
AT_LEAST_ONE_ROW = une matrice doit comporter au moins une ligne
BANDWIDTH = bande passante ({0})
BESSEL_FUNCTION_BAD_ARGUMENT = la fonction de Bessel \u00e0 l''ordre {0} ne peut pas \u00eatre calcul\u00e9e pour x = {1}
BESSEL_FUNCTION_FAILED_CONVERGENCE = la fonction de Bessel \u00e0 l''ordre {0} n''a pas r\u00e9ussi \u00e0 converger pour x = {1}
BINOMIAL_INVALID_PARAMETERS_ORDER = n doit \u00eatre sup\u00e9rieur ou \u00e9gal \u00e0 k pour le coefficient du bin\u00f4me (n, k), or k = {0}, n = {1}
BINOMIAL_NEGATIVE_PARAMETER = n doit \u00eatre positif pour le coefficient du bin\u00f4me (n, k), or n = {0}
CANNOT_CLEAR_STATISTIC_CONSTRUCTED_FROM_EXTERNAL_MOMENTS = les statistiques bas\u00e9es sur des moments externes ne peuvent pas \u00eatre remises \u00e0 z\u00e9ro
CANNOT_COMPUTE_0TH_ROOT_OF_UNITY = impossible de calculer la racine z\u00e9roi\u00e8me de l''unit\u00e9,
CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA = impossible de calculer la densit\u00e9 beta en 0 lorsque alpha = {0,number}
CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA = impossible de calculer la densit\u00e9 beta en 1 lorsque beta = %.3g
CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N = impossible de calculer la racine ni\u00e8me pour n n\u00e9gatif ou nul : {0}
CANNOT_DISCARD_NEGATIVE_NUMBER_OF_ELEMENTS = impossible d''enlever un nombre d''\u00e9l\u00e9ments{0} n\u00e9gatif
CANNOT_FORMAT_INSTANCE_AS_3D_VECTOR = impossible de formater une instance de {0} comme un vecteur de dimension 3
CANNOT_FORMAT_INSTANCE_AS_COMPLEX = impossible de formater une instance de {0} comme un nombre complexe
CANNOT_FORMAT_INSTANCE_AS_REAL_VECTOR = impossible de formater une instance de {0} comme un vecteur r\u00e9el
CANNOT_FORMAT_OBJECT_TO_FRACTION = impossible de formater l''objet sous forme d''un nombre rationnel
CANNOT_INCREMENT_STATISTIC_CONSTRUCTED_FROM_EXTERNAL_MOMENTS = les statistiques bas\u00e9es sur des moments externes ne peuvent pas \u00eatre incr\u00e9ment\u00e9es
CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR = impossible de normer un vecteur de norme nulle
CANNOT_RETRIEVE_AT_NEGATIVE_INDEX = impossible d''extraire un \u00e9l\u00e9ment \u00e0 un index n\u00e9gatif ({0})
CANNOT_SET_AT_NEGATIVE_INDEX = impossible de mettre un \u00e9l\u00e9ment \u00e0 un index n\u00e9gatif ({0})
CANNOT_SUBSTITUTE_ELEMENT_FROM_EMPTY_ARRAY = impossible de substituer un \u00e9l\u00e9ment dans un tableau vide
CANNOT_TRANSFORM_TO_DOUBLE = Exception de conversion dans une transformation : {0}
CARDAN_ANGLES_SINGULARITY = singularit\u00e9 d''angles de Cardan
CLASS_DOESNT_IMPLEMENT_COMPARABLE = la classe ({0}) n''implante pas l''interface Comparable
CLOSE_VERTICES = sommets trop proches \u00e0 proximit\u00e9 du point ({0}, {1}, {2})
CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT = la matrice orthogonale la plus proche a un d\u00e9terminant n\u00e9gatif {0}
COLUMN_INDEX_OUT_OF_RANGE = l''index de colonne {0} est hors du domaine autoris\u00e9 [{1}, {2}]
COLUMN_INDEX = index de colonne ({0})
CONSTRAINT = contrainte
CONTINUED_FRACTION_INFINITY_DIVERGENCE = Divergence de fraction continue \u00e0 l''infini pour la valeur {0}
CONTINUED_FRACTION_NAN_DIVERGENCE = Divergence de fraction continue \u00e0 NaN pour la valeur {0}
CONTRACTION_CRITERIA_SMALLER_THAN_EXPANSION_FACTOR = crit\u00e8re de contraction ({0}) inf\u00e9rieur au facteur d''extension ({1}). Ceci induit une boucle infinie d''extensions/contractions car tout tableau de stockage fra\u00eechement \u00e9tendu respecte imm\u00e9diatement le crit\u00e8re de contraction.
CONTRACTION_CRITERIA_SMALLER_THAN_ONE = crit\u00e8re de contraction inf\u00e9rieur \u00e0 un ({0}). Ceci induit une boucle infinie d''extensions/contractions car tout tableau de stockage de longueur \u00e9gale au nombre d''\u00e9l\u00e9ments respecte le crit\u00e8re de contraction.
CONVERGENCE_FAILED = \u00c9chec de convergence
CROSSING_BOUNDARY_LOOPS = certains p\u00e9rim\u00e8tres de fronti\u00e8res se croisent
CROSSOVER_RATE = proportion de m\u00e9lange ({0})
CUMULATIVE_PROBABILITY_RETURNED_NAN = Fonction de probabilit\u00e9 cumulative retourn\u00e9 NaN \u00e0 l''argument de {0} p = {1}
DIFFERENT_ROWS_LENGTHS = certaines lignes ont une longueur de {0} alors que d''autres ont une longueur de {1}
DIFFERENT_ORIG_AND_PERMUTED_DATA = les donn\u00e9es originales et permut\u00e9es doivent contenir les m\u00eames \u00e9l\u00e9ments
DIGEST_NOT_INITIALIZED = mod\u00e8le empirique non initialis\u00e9
DIMENSIONS_MISMATCH_2x2 = {0}x{1} \u00e0 la place de {2}x{3}
DIMENSIONS_MISMATCH_SIMPLE = {0} != {1}
DIMENSIONS_MISMATCH = dimensions incoh\u00e9rentes
DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN = Discr\u00e8tes fonction de probabilit\u00e9 cumulative retourn\u00e9 NaN \u00e0 l''argument de {0}
DISTRIBUTION_NOT_LOADED = aucune distribution n''a \u00e9t\u00e9 charg\u00e9e
DUPLICATED_ABSCISSA_DIVISION_BY_ZERO = la duplication de l''abscisse {0} engendre une division par z\u00e9ro
EDGE_CONNECTED_TO_ONE_FACET = l''ar\u00eate joignant les points ({0}, {1}, {2}) et ({3}, {4}, {5}) n''est connect\u00e9e qu''\u00e0 une seule facette
ELITISM_RATE = proportion d''\u00e9litisme ({0})
EMPTY_CLUSTER_IN_K_MEANS = groupe vide dans l''algorithme des k-moyennes
EMPTY_INTERPOLATION_SAMPLE = \u00e9chantillon d''interpolation vide
EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY = tableau de coefficients polyn\u00f4miaux vide
EMPTY_SELECTED_COLUMN_INDEX_ARRAY = tableau des indices de colonnes s\u00e9lectionn\u00e9es vide
EMPTY_SELECTED_ROW_INDEX_ARRAY = tableau des indices de lignes s\u00e9lectionn\u00e9es vide
EMPTY_STRING_FOR_IMAGINARY_CHARACTER = cha\u00eene vide pour le caract\u00e8re imaginaire
ENDPOINTS_NOT_AN_INTERVAL = les bornes ne d\u00e9finissent pas un intervalle : [{0}, {1}]
EQUAL_VERTICES_IN_SIMPLEX = sommets {0} et {1} \u00e9gaux dans la configuration du simplexe
EULER_ANGLES_SINGULARITY = singularit\u00e9 d''angles d''Euler
EVALUATION = \u00e9valuation
EXPANSION_FACTOR_SMALLER_THAN_ONE = facteur d''extension inf\u00e9rieur \u00e0 un ({0})
FACET_ORIENTATION_MISMATCH = orientations incoh\u00e9rentes des facettes de part et d''autre de l''ar\u00eate joignant les points ({0}, {1}, {2}) et ({3}, {4}, {5})
FACTORIAL_NEGATIVE_PARAMETER = n doit \u00eatre positif pour le calcul de n!, or n = {0}
FAILED_BRACKETING = nombre d''it\u00e9rations = {4}, it\u00e9rations maximum = {5}, valeur initiale = {6}, borne inf\u00e9rieure = {7}, borne sup\u00e9rieure = {8}, valeur a finale = {0}, valeur b finale = {1}, f(a) = {2}, f(b) = {3}
FAILED_FRACTION_CONVERSION = Impossible de convertir {0} en fraction apr\u00e8s {1} it\u00e9rations
FIRST_COLUMNS_NOT_INITIALIZED_YET = les {0} premi\u00e8res colonnes ne sont pas encore initialis\u00e9es
FIRST_ELEMENT_NOT_ZERO = le premier \u00e9l\u00e9ment n''est pas nul : {0}
FIRST_ROWS_NOT_INITIALIZED_YET = les {0} premi\u00e8res lignes ne sont pas encore initialis\u00e9es
FRACTION_CONVERSION_OVERFLOW = D\u00e9passement de capacit\u00e9 lors de la conversion de {0} en fraction ({1}/{2})
FUNCTION_NOT_DIFFERENTIABLE = la fonction n''est pas diff\u00e9rentiable
FUNCTION_NOT_POLYNOMIAL = la fonction n''est pas polyn\u00f4miale
GCD_OVERFLOW_32_BITS = d\u00e9passement de capacit\u00e9 : le PGCD de {0} et {1} vaut 2\u00b3\u00b9
GCD_OVERFLOW_64_BITS = d\u00e9passement de capacit\u00e9 : le PGCD de {0} et {1} vaut 2\u2076\u00b3
HOLE_BETWEEN_MODELS_TIME_RANGES = trou de longueur {0} entre les domaines temporels des mod\u00e8les
ILL_CONDITIONED_OPERATOR = le conditionnement {1} est trop \u00e9lev\u00e9
INCONSISTENT_STATE_AT_2_PI_WRAPPING = \u00e9tat incoh\u00e9rent au niveau du recollement \u00e0 2\u03c0
INDEX_LARGER_THAN_MAX = l''index sp\u00e9cifi\u00e9 ({0}) d\u00e9passe l''index maximal courant ({1})
INDEX_NOT_POSITIVE = l''indice ({0}) n''est pas positif
INDEX_OUT_OF_RANGE = l''indice ({0}) est hors du domaine autoris\u00e9 [{1}, {2}]
INDEX = indice ({0})
NOT_FINITE_NUMBER = {0} n''est pas un nombre fini
INFINITE_BOUND = intervalle limites doit \u00eatre finie
ARRAY_ELEMENT = valeur {0} \u00e0 l''indice {1}
INFINITE_ARRAY_ELEMENT = le tableau contient l''\u00e9l\u00e9ment infini {0} \u00e0 l''index {1}
INFINITE_VALUE_CONVERSION = les valeurs infinies ne peuvent \u00eatre converties
INITIAL_CAPACITY_NOT_POSITIVE = la capacit\u00e9 initiale ({0}) n''est pas positive
INITIAL_COLUMN_AFTER_FINAL_COLUMN = colonne initiale {1} apr\u00e8s la colonne finale {0}
INITIAL_ROW_AFTER_FINAL_ROW = ligne initiale {1} apr\u00e8s la ligne finale {0}
INPUT_DATA_FROM_UNSUPPORTED_DATASOURCE = les donn\u00e9es d''entr\u00e9e proviennent d''une source non prise en compte : {0}, sources prises en comptes : {1}, {2}
INSTANCES_NOT_COMPARABLE_TO_EXISTING_VALUES = l''instance de la classe {0} n''est pas comparable aux valeurs existantes
INSUFFICIENT_DATA = donn\u00e9es insuffisantes
INSUFFICIENT_DATA_FOR_T_STATISTIC = deux valeurs ou plus sont n\u00e9cessaires pour la statistique t, il y en a {0}
INSUFFICIENT_DIMENSION = dimension {0} insuffisante, elle devrait \u00eatre au moins {1}
DIMENSION = dimension ({0})
INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE = l''\u00e9chantillon ne contient que {0} points alors qu''au moins {1} sont n\u00e9cessaires
INSUFFICIENT_ROWS_AND_COLUMNS = donn\u00e9es insuffisantes : seulement {0} lignes et {1} colonnes.
INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS = les m\u00e9thodes multi-pas n\u00e9cessitent au moins {0} pas pr\u00e9c\u00e9dents, il y en a {1}
INTERNAL_ERROR = erreur interne, veuillez signaler l''erreur \u00e0 {0}
INVALID_BINARY_DIGIT = chiffre binaire invalide : {0}
INVALID_BINARY_CHROMOSOME = la mutation binaire ne fonctionne qu''avec BinaryChromosome
INVALID_BRACKETING_PARAMETERS = param\u00e8tres d''encadrement invalides : borne inf\u00e9rieure = {0}, valeur initiale = {1}, borne sup\u00e9rieure = {2}
INVALID_FIXED_LENGTH_CHROMOSOME = le m\u00e9lange \u00e0 un point ne fonctionne qu''avec les chromosomes \u00e0 taille fixe
INVALID_IMPLEMENTATION = une fonctionnalit\u00e9 requise est manquante dans {0}
INVALID_INTERVAL_INITIAL_VALUE_PARAMETERS = param\u00e8tres de l''intervalle initial invalides : borne inf = {0}, valeur initiale = {1}, borne sup = {2}
INVALID_ITERATIONS_LIMITS = limites d''it\u00e9rations invalides : min = {0}, max = {1}
INVALID_MAX_ITERATIONS = valeur invalide pour le nombre maximal d''it\u00e9rations : {0}
NOT_ENOUGH_DATA_REGRESSION = le nombre d''observations est insuffisant pour r\u00e9aliser une r\u00e9gression
INVALID_REGRESSION_ARRAY= la longueur du tableau de donn\u00e9es = {0} ne correspond pas au nombre d''observations = {1} et le nombre de variables explicatives = {2}
INVALID_REGRESSION_OBSERVATION = la longueur du tableau de variables explicatives ({0}) ne correspond pas au nombre de variables dans le mod\u00e8le ({1})
INVALID_ROUNDING_METHOD = m\u00e9thode d''arrondi {0} invalide, m\u00e9thodes valides : {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})
ITERATOR_EXHAUSTED = it\u00e9ration achev\u00e9e
ITERATIONS = it\u00e9rations
LCM_OVERFLOW_32_BITS = d\u00e9passement de capacit\u00e9 : le MCM de {0} et {1} vaut 2\u00b3\u00b9
LCM_OVERFLOW_64_BITS = d\u00e9passement de capacit\u00e9 : le MCM de {0} et {1} vaut 2\u2076\u00b3
LIST_OF_CHROMOSOMES_BIGGER_THAN_POPULATION_SIZE = la liste des chromosomes d\u00e9passe maxPopulationSize
LOESS_EXPECTS_AT_LEAST_ONE_POINT = la r\u00e9gression Loess n\u00e9cessite au moins un point
LOWER_BOUND_NOT_BELOW_UPPER_BOUND = la borne inf\u00e9rieure ({0}) doit \u00eatre strictement plus petite que la borne sup\u00e9rieure ({1})
LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT = la borne inf\u00e9rieure ({0}) devrait \u00eatre inf\u00e9rieure ou \u00e9gale \u00e0 la borne sup\u00e9rieure ({1})
MAP_MODIFIED_WHILE_ITERATING = la table d''adressage a \u00e9t\u00e9 modifi\u00e9e pendant l''it\u00e9ration
EVALUATIONS = \u00e9valuations
MAX_COUNT_EXCEEDED = limite ({0}) d\u00e9pass\u00e9
MAX_ITERATIONS_EXCEEDED = nombre maximal d''it\u00e9rations ({0}) d\u00e9pass\u00e9
MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION = pas minimal ({1,number,0.00E00}) atteint, l''int\u00e9gration n\u00e9cessite {0,number,0.00E00}
MISMATCHED_LOESS_ABSCISSA_ORDINATE_ARRAYS = Loess a besoin de tableaux d''abscisses et d''ordonn\u00e9es de m\u00eame taille, mais il y a {0} points en abscisse et {1} en ordonn\u00e9e
MUTATION_RATE = proportion de mutation ({0})
MULTISTEP_STARTER_STOPPED_EARLY = arr\u00eat pr\u00e9matur\u00e9 du d\u00e9marrage de l''int\u00e9grateur multi-pas, taille de pas peut-\u00eatre trop grande"),
NAN_ELEMENT_AT_INDEX = l''\u00e9l\u00e9ment {0} est un NaN
NAN_VALUE_CONVERSION = les valeurs NaN ne peuvent \u00eatre converties
NEGATIVE_BRIGHTNESS_EXPONENT = l''exposant de brillance devrait \u00eatre positif ou null, or e = {0}
NEGATIVE_COMPLEX_MODULE = module n\u00e9gatif ({0}) pour un nombre complexe
NEGATIVE_ELEMENT_AT_2D_INDEX = l''\u00e9l\u00e9ment ({0}, {1}) est n\u00e9gatif : {2}
NEGATIVE_ELEMENT_AT_INDEX = l''\u00e9l\u00e9ment {0} est n\u00e9gatif : {1}
NEGATIVE_NUMBER_OF_SUCCESSES = le nombre de succ\u00e8s ne doit pas \u00eatre n\u00e9gatif ({0})
NUMBER_OF_SUCCESSES = nombre de succ\u00e8s ({0})
NEGATIVE_NUMBER_OF_TRIALS = le nombre d''essais ne doit pas \u00eatre n\u00e9gatif ({0})
NUMBER_OF_INTERPOLATION_POINTS = nombre de points d''interpolation ({0})
NUMBER_OF_TRIALS = nombre d''essais ({0})
ROBUSTNESS_ITERATIONS = nombre d''it\u00e9rations robuste ({0})
START_POSITION = position de d\u00e9part ({0})
NON_CONVERGENT_CONTINUED_FRACTION = \u00c9chec de convergence (en moins de {0} it\u00e9rations) de fraction continue pour la valeur {1}
NON_INVERTIBLE_TRANSFORM = la transformation affine non-inversible r\u00e9duit des lignes \u00e0 de simples points
NON_POSITIVE_MICROSPHERE_ELEMENTS = le nombre d''\u00e9l\u00e9ments de la microsph\u00e8re devrait \u00eatre positif, or n = {0}
NON_POSITIVE_POLYNOMIAL_DEGREE = le polyn\u00f4me doit \u00eatre de degr\u00e9 positif : degr\u00e9 = {0}
NON_REAL_FINITE_ABSCISSA = toutes les abscisses doivent \u00eatre des nombres r\u00e9els finis, mais l''abscisse {0} vaut {1}
NON_REAL_FINITE_ORDINATE = toutes les ordonn\u00e9es doivent \u00eatre des nombres r\u00e9els finis, mais l''ordonn\u00e9e {0} vaut {1}
NON_REAL_FINITE_WEIGHT = tous les poids doivent \u00eatre des nombres r\u00e9els finis, mais le poids {0} vaut {1}
NON_SQUARE_MATRIX = matrice non carr\u00e9e ({0}x{1})
NORM = norme ({0})
NORMALIZE_INFINITE = impossible de normaliser vers une valeur infinie
NORMALIZE_NAN = impossible de normaliser vers NaN
NOT_ADDITION_COMPATIBLE_MATRICES = les dimensions {0}x{1} et {2}x{3} sont incompatibles pour l''addition matricielle
NOT_CONVEX = les points ne constituent pas une enveloppe convexe
NOT_CONVEX_HYPERPLANES = les hyperplans ne d\u00e9finissent pas une r\u00e9gion convexe
NOT_DECREASING_NUMBER_OF_POINTS = les points {0} et {1} ne sont pas d\u00e9croissants ({2} < {3})
NOT_DECREASING_SEQUENCE = les points {3} et {2} ne sont pas d\u00e9croissants ({1} < {0})
NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS = pas assez de donn\u00e9es ({0} lignes) pour {1} pr\u00e9dicteurs
NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION = une partition spline n\u00e9cessite au moins {0} points, seuls {1} ont \u00e9t\u00e9 fournis
NOT_INCREASING_NUMBER_OF_POINTS = les points {0} et {1} ne sont pas croissants ({2} > {3})
NOT_INCREASING_SEQUENCE = les points {3} et {2} ne sont pas croissants ({1} > {0})
NOT_MULTIPLICATION_COMPATIBLE_MATRICES = les dimensions {0}x{1} et {2}x{3} sont incompatibles pour la multiplication matricielle
NOT_POSITIVE_DEFINITE_MATRIX = matrice non d\u00e9finie positive
NON_POSITIVE_DEFINITE_MATRIX = matrice non d\u00e9finie positive : l''\u00e9l\u00e9ment diagonal ({1},{1}) est inf\u00e9rieur \u00e0 {2} ({0})
NON_POSITIVE_DEFINITE_OPERATOR = op\u00e9rateur lin\u00e9aire non d\u00e9fini positif
NON_SELF_ADJOINT_OPERATOR = op\u00e9rateur lin\u00e9aire non auto-adjoint
NON_SQUARE_OPERATOR = op\u00e9rateur lin\u00e9aire non carr\u00e9 ({0}x{1})
NOT_POSITIVE_DEGREES_OF_FREEDOM = les degr\u00e9s de libert\u00e9 doivent \u00eatre positifs ({0})
DEGREES_OF_FREEDOM = degr\u00e9s de libert\u00e9 ({0})
NOT_POSITIVE_ELEMENT_AT_INDEX = l''\u00e9l\u00e9ment {0} n''est pas positif : {1}
NOT_POSITIVE_EXPONENT = exposant {0} invalide (doit \u00eatre positif)
NUMBER_OF_ELEMENTS_SHOULD_BE_POSITIVE = le nombre d''\u00e9l\u00e9ments devrait \u00eatre positif ({0})
BASE = base ({0})
EXPONENT = exposant ({0})
NOT_POSITIVE_LENGTH = la longueur doit \u00eatre positive ({0})
LENGTH = longueur ({0})
NOT_POSITIVE_MEAN = la moyenne doit \u00eatre positive ({0})
MEAN = moyenne ({0})
NOT_POSITIVE_NUMBER_OF_SAMPLES = le nombre d''\u00e9chantillons n''est pas positif : {0}
NUMBER_OF_SAMPLES = nombre d''\u00e9chantillons ({0})
NOT_POSITIVE_PERMUTATION = la permutation k ({0}) doit \u00eatre positive
PERMUTATION_SIZE = taille de la permutation ({0})
NOT_POSITIVE_POISSON_MEAN = la moyenne de Poisson doit \u00eatre positive ({0})
NOT_POSITIVE_POPULATION_SIZE = la taille de la population doit \u00eatre positive ({0})
POPULATION_SIZE = taille de la population ({0})
NOT_POSITIVE_ROW_DIMENSION = nombre de lignes invalide : {0} (doit \u00eatre positif)
NOT_POSITIVE_SAMPLE_SIZE = la taille de l''\u00e9chantillon doit \u00eatre positive ({0})
NOT_POSITIVE_SCALE = l''\u00e9chelle doit \u00eatre positive ({0})
SCALE = facteur d''\u00e9chelle ({0})
NOT_POSITIVE_SHAPE = le facteur de forme doit \u00eatre positif ({0})
SHAPE = facteur de forme ({0})
NOT_POSITIVE_STANDARD_DEVIATION = l''\u00e9cart type doit \u00eatre positif ({0})
STANDARD_DEVIATION = \u00e9cart type ({0})
NOT_POSITIVE_UPPER_BOUND = la borne sup\u00e9rieure doit \u00eatre positive ({0})
NOT_POSITIVE_WINDOW_SIZE = la taille de la fen\u00eatre doit \u00eatre positive ({0})
NOT_POWER_OF_TWO = {0} n''est pas une puissance de 2
NOT_POWER_OF_TWO_CONSIDER_PADDING = {0} n''est pas une puissance de 2, ajoutez des \u00e9l\u00e9ments pour corriger
NOT_POWER_OF_TWO_PLUS_ONE = {0} n''est pas une puissance de 2 plus un
NOT_STRICTLY_DECREASING_NUMBER_OF_POINTS = les points {0} et {1} ne sont pas strictement d\u00e9croissants ({2} <= {3})
NOT_STRICTLY_DECREASING_SEQUENCE = les points {3} et {2} ne sont pas strictement d\u00e9croissants ({1} <= {0})
NOT_STRICTLY_INCREASING_KNOT_VALUES = les n\u0153uds d''interpolation doivent \u00eatre strictement croissants
NOT_STRICTLY_INCREASING_NUMBER_OF_POINTS = les points {0} et {1} ne sont pas strictement croissants ({2} >= {3})
NOT_STRICTLY_INCREASING_SEQUENCE = les points {3} et {2} ne sont pas strictement croissants ({1} >= {0})
NOT_SUBTRACTION_COMPATIBLE_MATRICES = les dimensions {0}x{1} et {2}x{3} sont incompatibles pour la soustraction matricielle
NOT_SUPPORTED_IN_DIMENSION_N = m\u00e9thode non disponible en dimension {0}
NOT_SYMMETRIC_MATRIX = matrice non symm\u00e9trique
NON_SYMMETRIC_MATRIX = matrice non symm\u00e9trique: la diff\u00e9rence entre les \u00e9l\u00e9ments ({0},{1}) et ({1},{0}) est sup\u00e9rieure \u00e0 {2}
NO_BIN_SELECTED = aucun compartiment s\u00e9lectionn\u00e9
NO_CONVERGENCE_WITH_ANY_START_POINT = aucun des {0} points de d\u00e9part n''aboutit \u00e0 une convergence
NO_DATA = aucune donn\u00e9e
NO_DEGREES_OF_FREEDOM = aucun degr\u00e9 de libert\u00e9 ({0} mesures, {1} param\u00e8tres)
NO_DENSITY_FOR_THIS_DISTRIBUTION = La fonction de densit\u00e9 pour cette distribution n''a pas \u00e9t\u00e9 mis en \u0153uvre
NO_FEASIBLE_SOLUTION = aucune solution r\u00e9alisable
NO_OPTIMUM_COMPUTED_YET = aucun optimum n''a encore \u00e9t\u00e9 calcul\u00e9
NO_REGRESSORS = le mod\u00e8le de r\u00e9gression doit inclure au moins une variable explicative
NO_RESULT_AVAILABLE = aucun r\u00e9sultat n''est disponible
NO_SUCH_MATRIX_ENTRY = pas d''\u00e9l\u00e9ment ({0}, {1}) dans une matrice {2}x{3}
NAN_NOT_ALLOWED = "NaN" n''est pas permis
NULL_NOT_ALLOWED = "null" n''est pas permis
ARRAY_ZERO_LENGTH_OR_NULL_NOT_ALLOWED = un tableau nul ou de taille z\u00e9ro n''est pas autoris\u00e9
COVARIANCE_MATRIX = matrice de covariance
DENOMINATOR = d\u00e9nominateur
DENOMINATOR_FORMAT = format du d\u00e9nominateur
FRACTION = fraction
FUNCTION = fonction
IMAGINARY_FORMAT = format de la partie imaginaire
INPUT_ARRAY = tableau d''entr\u00e9e
NUMERATOR = num\u00e9rateur
NUMERATOR_FORMAT = format du num\u00e9rateur
OBJECT_TRANSFORMATION = exception de conversion dans une transformation
REAL_FORMAT = format de la partie r\u00e9elle
WHOLE_FORMAT = format complet
NUMBER_TOO_LARGE = {0} est plus grand que le maximum ({1})
NUMBER_TOO_SMALL = {0} est plus petit que le minimum ({1})
NUMBER_TOO_LARGE_BOUND_EXCLUDED = {0} n''est pas strictement plus petit que le maximum ({1})
NUMBER_TOO_SMALL_BOUND_EXCLUDED = {0} n''est pas strictement plus grand que le minimum ({1})
NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE = le nombre de succ\u00e8s ({0}) doit \u00eatre inf\u00e9rieur ou \u00e9gal \u00e0 la taille de la population ({1})
NUMERATOR_OVERFLOW_AFTER_MULTIPLY = d\u00e9passement de capacit\u00e9 pour le num\u00e9rateur apr\u00e8s multiplication : {0}
N_POINTS_GAUSS_LEGENDRE_INTEGRATOR_NOT_SUPPORTED = l''int\u00e9grateur de Legendre-Gauss en {0} points n''est pas disponible, le nombre de points doit \u00eatre entre {1} et {2}
OBSERVED_COUNTS_ALL_ZERO = aucune occurrence dans le tableau des observations {0}
OBSERVED_COUNTS_BOTTH_ZERO_FOR_ENTRY = les occurrences observ\u00e9es sont toutes deux nulles pour l''entr\u00e9e {0}
BOBYQA_BOUND_DIFFERENCE_CONDITION = la diff\u00e9rence entre la contrainte sup\u00e9rieure et inf\u00e9rieure doit \u00eatre plus grande que deux fois le rayon de la r\u00e9gion de confiance initiale ({0})
OUT_OF_BOUNDS_CONFIDENCE_LEVEL = niveau de confiance {0} hors domaine, doit \u00eatre entre {1} et {2}
OUT_OF_BOUNDS_QUANTILE_VALUE = valeur de quantile {0} hors bornes, doit \u00eatre dans l''intervalle ]0, 100]
OUT_OF_BOUND_SIGNIFICANCE_LEVEL = niveau de signification {0} hors domaine, doit \u00eatre entre {1} et {2}
SIGNIFICANCE_LEVEL = niveau de signification ({0})
OUT_OF_ORDER_ABSCISSA_ARRAY = les abscisses doivent \u00eatre en ordre strictement croissant, mais l''\u00e9l\u00e9ment {0} vaut {1} alors que l''\u00e9l\u00e9ment {2} vaut {3}
OUT_OF_PLANE = le point ({0}, {1}, {2}) est hors du plan
OUT_OF_RANGE_ROOT_OF_UNITY_INDEX = l''indice de racine de l''unit\u00e9 {0} est hors du domaine autoris\u00e9 [{1};{2}]
OUT_OF_RANGE_SIMPLE = {0} hors du domaine [{1}, {2}]
OUT_OF_RANGE_LEFT = {0} hors du domaine ({1}, {2}]
OUT_OF_RANGE_RIGHT = {0} hors du domaine [{1}, {2})
OUT_OF_RANGE = hors domaine
OUTLINE_BOUNDARY_LOOP_OPEN = un p\u00e9rim\u00e8tre fronti\u00e8re est ouvert
OVERFLOW = d\u00e9passement de capacit\u00e9
OVERFLOW_IN_FRACTION = d\u00e9passement de capacit\u00e9 pour la fraction {0}/{1}, son signe ne peut \u00eatre chang\u00e9
OVERFLOW_IN_ADDITION = d\u00e9passement de capacit\u00e9 pour l''addition : {0} + {1}
OVERFLOW_IN_SUBTRACTION = d\u00e9passement de capacit\u00e9 pour la soustraction : {0} - {1}
OVERFLOW_IN_MULTIPLICATION = d\u00e9passement de capacit\u00e9 pour la multiplication : {0} * {1}
PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD = acc\u00e8s impossible \u00e0 la m\u00e9thode {0} dans la mise en \u0153uvre du pourcentage {1}
PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD = l''implantation de pourcentage {0} ne dispose pas de la m\u00e9thode {1}
PERMUTATION_EXCEEDS_N = la taille de la permutation ({0}) d\u00e9passe le domaine de la permutation ({1})
POLYNOMIAL = polyn\u00f4me
POLYNOMIAL_INTERPOLANTS_MISMATCH_SEGMENTS = le nombre d''interpolants polyn\u00f4miaux doit correspondre au nombre de segments ({0} != {1} - 1)
POPULATION_LIMIT_NOT_POSITIVE = la limite de population doit \u00eatre positive
POWER_NEGATIVE_PARAMETERS = impossible d''\u00e9lever une valeur enti\u00e8re \u00e0 une puissance n\u00e9gative ({0}^{1})
PROPAGATION_DIRECTION_MISMATCH = directions de propagation incoh\u00e9rentes
RANDOMKEY_MUTATION_WRONG_CLASS = RandomKeyMutation ne fonctionne qu''avec la classe RandomKeys, pas avec {0}
ROOTS_OF_UNITY_NOT_COMPUTED_YET = les racines de l''unit\u00e9 n''ont pas encore \u00e9t\u00e9 calcul\u00e9es
ROTATION_MATRIX_DIMENSIONS = une matrice {0}x{1} ne peut pas \u00eatre une matrice de rotation
ROW_INDEX_OUT_OF_RANGE = l''index de ligne {0} est hors du domaine autoris\u00e9 [{1}, {2}]
ROW_INDEX = index de ligne ({0})
SAME_SIGN_AT_ENDPOINTS = les valeurs aux bornes de la fonction devraient avoir des signes difff\u00e9rents ; bornes : [{0}, {1}], valeurs : [{2}, {3}]
SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE = la taille de l''\u00e9chantillon ({0}) d\u00e9passe la taille de la collection ({1})
SAMPLE_SIZE_LARGER_THAN_POPULATION_SIZE = la taille de l''\u00e9chantillon ({0}) doit \u00eatre inf\u00e9rieure ou \u00e9gale \u00e0 la taille de la population ({1})
SIMPLEX_NEED_ONE_POINT = le simplexe doit contenir au moins un point
SIMPLE_MESSAGE = {0}
SINGULAR_MATRIX = matrice singuli\u00e8re
SINGULAR_OPERATOR = l''op\u00e9rateur est singulier
SUBARRAY_ENDS_AFTER_ARRAY_END = le sous-tableau se termine apr\u00e8s la fin du tableau
TOO_LARGE_CUTOFF_SINGULAR_VALUE = la valeur singuli\u00e8re de coupure vaut {0}, elle ne devrait pas d\u00e9passer {1}
TOO_LARGE_TOURNAMENT_ARITY = l''arit\u00e9 du tournois ({0}) ne doit pas d\u00e9passer la taille de la population ({1})
TOO_MANY_ELEMENTS_TO_DISCARD_FROM_ARRAY = impossible d''enlever {0} \u00e9l\u00e9ments d''un tableau en contenant {1}
TOO_MANY_REGRESSORS = trop de variables explicatives sp\u00e9cifi\u00e9es {0}, il n''y en a que {1} dans le mod\u00e8le
TOO_SMALL_COST_RELATIVE_TOLERANCE = trop petite tol\u00e9rance relative sur le co\u00fbt ({0}), aucune r\u00e9duction de la somme des carr\u00e9s n''est possible
TOO_SMALL_INTEGRATION_INTERVAL = intervalle d''int\u00e9gration trop petit : {0}
TOO_SMALL_ORTHOGONALITY_TOLERANCE = trop petite tol\u00e9rance sur l''orthogonalit\u00e9 ({0}), la solution est orthogonale \u00e0 la jacobienne
TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE = trop petite tol\u00e9rance relative sur les param\u00e8tres ({0}), aucune am\u00e9lioration de la solution approximative n''est possible
TRUST_REGION_STEP_FAILED = l''\u00e9tape de la r\u00e9gion de confiance n''a pas r\u00e9duit Q
TWO_OR_MORE_CATEGORIES_REQUIRED = deux cat\u00e9gories ou plus sont n\u00e9cessaires, il y en a {0}
TWO_OR_MORE_VALUES_IN_CATEGORY_REQUIRED = deux valeurs ou plus sont n\u00e9cessaires pour chaque cat\u00e9gorie, une cat\u00e9gorie en a {0}
UNABLE_TO_BRACKET_OPTIMUM_IN_LINE_SEARCH = impossible d''encadrer l''optimum lors de la recherche lin\u00e9aire
UNABLE_TO_COMPUTE_COVARIANCE_SINGULAR_PROBLEM = impossible de calculer les covariances : probl\u00e8me singulier
UNABLE_TO_FIRST_GUESS_HARMONIC_COEFFICIENTS = impossible de faire une premi\u00e8re estimation des coefficients harmoniques
UNABLE_TO_ORTHOGONOLIZE_MATRIX = impossible de rendre la matrice orthogonale en {0} it\u00e9rations
UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN = impossible de calculer la factorisation Q.R de la matrice jacobienne {0}x{1}
UNABLE_TO_SOLVE_SINGULAR_PROBLEM = r\u00e9solution impossible : probl\u00e8me singulier
UNBOUNDED_SOLUTION = solution non born\u00e9e
UNKNOWN_MODE = mode {0} inconnu, modes connus : {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}) et {11} ({12})
UNKNOWN_PARAMETER = param\u00e8tre {0} inconnu
UNMATCHED_ODE_IN_EXPANDED_SET = l''\u00e9quation diff\u00e9rentielle ne correspond pas \u00e0 l''\u00e9quation principale du jeu \u00e9tendu
CANNOT_PARSE_AS_TYPE = cha\u00eene "{0}" non analysable (\u00e0 partir de la position {1}) en un objet de type {2}
CANNOT_PARSE = cha\u00eene "{0}" non analysable (\u00e0 partir de la position {1})
UNPARSEABLE_3D_VECTOR = vecteur 3D non analysable : "{0}"
UNPARSEABLE_COMPLEX_NUMBER = nombre complexe non analysable : "{0}"
UNPARSEABLE_REAL_VECTOR = vecteur r\u00e9el non analysable : "{0}"
UNSUPPORTED_EXPANSION_MODE = mode d''extension {0} non support\u00e9, les modes support\u00e9s sont {1} ({2}) et {3} ({4})
UNSUPPORTED_OPERATION = op\u00e9ration non disponible
ARITHMETIC_EXCEPTION = erreur arithm\u00e9tique
ILLEGAL_STATE = \u00e9tat incoh\u00e9rent
USER_EXCEPTION = erreur g\u00e9n\u00e9r\u00e9e par le code utilisateur
URL_CONTAINS_NO_DATA = l''adresse {0} ne contient aucune donn\u00e9e
VALUES_ADDED_BEFORE_CONFIGURING_STATISTIC = {0} valeurs ont \u00e9t\u00e9 ajout\u00e9es
VECTOR_LENGTH_MISMATCH = taille de vecteur invalide : {0} au lieu de {1} attendue
VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT = un vecteur doit comporter au moins un \u00e9l\u00e9ment
WEIGHT_AT_LEAST_ONE_NON_ZERO = le tableau des poids doit contenir au moins une valeur non nulle
WRONG_BLOCK_LENGTH = forme de tableau erron\u00e9e (bloc de longueur {0} au lieu des {1} attendus)
WRONG_NUMBER_OF_POINTS = {0} sont n\u00e9cessaires, seuls {1} ont \u00e9t\u00e9 fournis
NUMBER_OF_POINTS = nombre de points ({0})
ZERO_DENOMINATOR = le d\u00e9nominateur doit \u00eatre diff\u00e9rent de 0
ZERO_DENOMINATOR_IN_FRACTION = d\u00e9nominateur nul dans le nombre rationnel {0}/{1}
ZERO_FRACTION_TO_DIVIDE_BY = division par un nombre rationnel nul : {0}/{1}
ZERO_NORM = norme nulle
ZERO_NORM_FOR_ROTATION_AXIS = norme nulle pour un axe de rotation
ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR = norme nulle pour un axe de d\u00e9finition de rotation
ZERO_NOT_ALLOWED = la valeur z\u00e9ro n''est pas autoris\u00e9e ici

1000
fine-commons-math3/resources/assets/com/fr/third/org/apache/commons/math3/random/new-joe-kuo-6.1000

File diff suppressed because it is too large Load Diff

58
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/Field.java

@ -0,0 +1,58 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3;
/**
* Interface representing a <a href="http://mathworld.wolfram.com/Field.html">field</a>.
* <p>
* Classes implementing this interface will often be singletons.
* </p>
* @param <T> the type of the field elements
* @see FieldElement
* @since 2.0
*/
public interface Field<T> {
/** Get the additive identity of the field.
* <p>
* The additive identity is the element e<sub>0</sub> of the field such that
* for all elements a of the field, the equalities a + e<sub>0</sub> =
* e<sub>0</sub> + a = a hold.
* </p>
* @return additive identity of the field
*/
T getZero();
/** Get the multiplicative identity of the field.
* <p>
* The multiplicative identity is the element e<sub>1</sub> of the field such that
* for all elements a of the field, the equalities a &times; e<sub>1</sub> =
* e<sub>1</sub> &times; a = a hold.
* </p>
* @return multiplicative identity of the field
*/
T getOne();
/**
* Returns the runtime class of the FieldElement.
*
* @return The {@code Class} object that represents the runtime
* class of this object.
*/
Class<? extends FieldElement<T>> getRuntimeClass();
}

87
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/FieldElement.java

@ -0,0 +1,87 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3;
import com.fr.third.org.apache.commons.math3.exception.MathArithmeticException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
/**
* Interface representing <a href="http://mathworld.wolfram.com/Field.html">field</a> elements.
* @param <T> the type of the field elements
* @see Field
* @since 2.0
*/
public interface FieldElement<T> {
/** Compute this + a.
* @param a element to add
* @return a new element representing this + a
* @throws NullArgumentException if {@code a} is {@code null}.
*/
T add(T a) throws NullArgumentException;
/** Compute this - a.
* @param a element to subtract
* @return a new element representing this - a
* @throws NullArgumentException if {@code a} is {@code null}.
*/
T subtract(T a) throws NullArgumentException;
/**
* Returns the additive inverse of {@code this} element.
* @return the opposite of {@code this}.
*/
T negate();
/** Compute n &times; this. Multiplication by an integer number is defined
* as the following sum
* <center>
* n &times; this = &sum;<sub>i=1</sub><sup>n</sup> this.
* </center>
* @param n Number of times {@code this} must be added to itself.
* @return A new element representing n &times; this.
*/
T multiply(int n);
/** Compute this &times; a.
* @param a element to multiply
* @return a new element representing this &times; a
* @throws NullArgumentException if {@code a} is {@code null}.
*/
T multiply(T a) throws NullArgumentException;
/** Compute this &divide; a.
* @param a element to divide by
* @return a new element representing this &divide; a
* @throws NullArgumentException if {@code a} is {@code null}.
* @throws MathArithmeticException if {@code a} is zero
*/
T divide(T a) throws NullArgumentException, MathArithmeticException;
/**
* Returns the multiplicative inverse of {@code this} element.
* @return the inverse of {@code this}.
* @throws MathArithmeticException if {@code this} is zero
*/
T reciprocal() throws MathArithmeticException;
/** Get the {@link Field} to which the instance belongs.
* @return {@link Field} to which the instance belongs
*/
Field<T> getField();
}

402
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/RealFieldElement.java

@ -0,0 +1,402 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
/**
* Interface representing a <a href="http://mathworld.wolfram.com/RealNumber.html">real</a>
* <a href="http://mathworld.wolfram.com/Field.html">field</a>.
* @param <T> the type of the field elements
* @see FieldElement
* @since 3.2
*/
public interface RealFieldElement<T> extends FieldElement<T> {
/** Get the real value of the number.
* @return real value
*/
double getReal();
/** '+' operator.
* @param a right hand side parameter of the operator
* @return this+a
*/
T add(double a);
/** '-' operator.
* @param a right hand side parameter of the operator
* @return this-a
*/
T subtract(double a);
/** '&times;' operator.
* @param a right hand side parameter of the operator
* @return this&times;a
*/
T multiply(double a);
/** '&divide;' operator.
* @param a right hand side parameter of the operator
* @return this&divide;a
*/
T divide(double a);
/** IEEE remainder operator.
* @param a right hand side parameter of the operator
* @return this - n &times; a where n is the closest integer to this/a
* (the even integer is chosen for n if this/a is halfway between two integers)
*/
T remainder(double a);
/** IEEE remainder operator.
* @param a right hand side parameter of the operator
* @return this - n &times; a where n is the closest integer to this/a
* (the even integer is chosen for n if this/a is halfway between two integers)
* @exception DimensionMismatchException if number of free parameters or orders are inconsistent
*/
T remainder(T a)
throws DimensionMismatchException;
/** absolute value.
* @return abs(this)
*/
T abs();
/** Get the smallest whole number larger than instance.
* @return ceil(this)
*/
T ceil();
/** Get the largest whole number smaller than instance.
* @return floor(this)
*/
T floor();
/** Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
* @return a double number r such that r is an integer r - 0.5 &le; this &le; r + 0.5
*/
T rint();
/** Get the closest long to instance value.
* @return closest long to {@link #getReal()}
*/
long round();
/** Compute the signum of the instance.
* The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise
* @return -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
*/
T signum();
/**
* Returns the instance with the sign of the argument.
* A NaN {@code sign} argument is treated as positive.
*
* @param sign the sign for the returned value
* @return the instance with the same sign as the {@code sign} argument
*/
T copySign(T sign);
/**
* Returns the instance with the sign of the argument.
* A NaN {@code sign} argument is treated as positive.
*
* @param sign the sign for the returned value
* @return the instance with the same sign as the {@code sign} argument
*/
T copySign(double sign);
/**
* Multiply the instance by a power of 2.
* @param n power of 2
* @return this &times; 2<sup>n</sup>
*/
T scalb(int n);
/**
* Returns the hypotenuse of a triangle with sides {@code this} and {@code y}
* - sqrt(<i>this</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
* avoiding intermediate overflow or underflow.
*
* <ul>
* <li> If either argument is infinite, then the result is positive infinity.</li>
* <li> else, if either argument is NaN then the result is NaN.</li>
* </ul>
*
* @param y a value
* @return sqrt(<i>this</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
* @exception DimensionMismatchException if number of free parameters or orders are inconsistent
*/
T hypot(T y)
throws DimensionMismatchException;
/** {@inheritDoc} */
T reciprocal();
/** Square root.
* @return square root of the instance
*/
T sqrt();
/** Cubic root.
* @return cubic root of the instance
*/
T cbrt();
/** N<sup>th</sup> root.
* @param n order of the root
* @return n<sup>th</sup> root of the instance
*/
T rootN(int n);
/** Power operation.
* @param p power to apply
* @return this<sup>p</sup>
*/
T pow(double p);
/** Integer power operation.
* @param n power to apply
* @return this<sup>n</sup>
*/
T pow(int n);
/** Power operation.
* @param e exponent
* @return this<sup>e</sup>
* @exception DimensionMismatchException if number of free parameters or orders are inconsistent
*/
T pow(T e)
throws DimensionMismatchException;
/** Exponential.
* @return exponential of the instance
*/
T exp();
/** Exponential minus 1.
* @return exponential minus one of the instance
*/
T expm1();
/** Natural logarithm.
* @return logarithm of the instance
*/
T log();
/** Shifted natural logarithm.
* @return logarithm of one plus the instance
*/
T log1p();
// TODO: add this method in 4.0, as it is not possible to do it in 3.2
// due to incompatibility of the return type in the Dfp class
// /** Base 10 logarithm.
// * @return base 10 logarithm of the instance
// */
// T log10();
/** Cosine operation.
* @return cos(this)
*/
T cos();
/** Sine operation.
* @return sin(this)
*/
T sin();
/** Tangent operation.
* @return tan(this)
*/
T tan();
/** Arc cosine operation.
* @return acos(this)
*/
T acos();
/** Arc sine operation.
* @return asin(this)
*/
T asin();
/** Arc tangent operation.
* @return atan(this)
*/
T atan();
/** Two arguments arc tangent operation.
* @param x second argument of the arc tangent
* @return atan2(this, x)
* @exception DimensionMismatchException if number of free parameters or orders are inconsistent
*/
T atan2(T x)
throws DimensionMismatchException;
/** Hyperbolic cosine operation.
* @return cosh(this)
*/
T cosh();
/** Hyperbolic sine operation.
* @return sinh(this)
*/
T sinh();
/** Hyperbolic tangent operation.
* @return tanh(this)
*/
T tanh();
/** Inverse hyperbolic cosine operation.
* @return acosh(this)
*/
T acosh();
/** Inverse hyperbolic sine operation.
* @return asin(this)
*/
T asinh();
/** Inverse hyperbolic tangent operation.
* @return atanh(this)
*/
T atanh();
/**
* Compute a linear combination.
* @param a Factors.
* @param b Factors.
* @return <code>&Sigma;<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>.
* @throws DimensionMismatchException if arrays dimensions don't match
* @since 3.2
*/
T linearCombination(T[] a, T[] b)
throws DimensionMismatchException;
/**
* Compute a linear combination.
* @param a Factors.
* @param b Factors.
* @return <code>&Sigma;<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>.
* @throws DimensionMismatchException if arrays dimensions don't match
* @since 3.2
*/
T linearCombination(double[] a, T[] b)
throws DimensionMismatchException;
/**
* Compute a linear combination.
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @return a<sub>1</sub>&times;b<sub>1</sub> +
* a<sub>2</sub>&times;b<sub>2</sub>
* @see #linearCombination(Object, Object, Object, Object, Object, Object)
* @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
* @since 3.2
*/
T linearCombination(T a1, T b1, T a2, T b2);
/**
* Compute a linear combination.
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @return a<sub>1</sub>&times;b<sub>1</sub> +
* a<sub>2</sub>&times;b<sub>2</sub>
* @see #linearCombination(double, Object, double, Object, double, Object)
* @see #linearCombination(double, Object, double, Object, double, Object, double, Object)
* @since 3.2
*/
T linearCombination(double a1, T b1, double a2, T b2);
/**
* Compute a linear combination.
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @param a3 first factor of the third term
* @param b3 second factor of the third term
* @return a<sub>1</sub>&times;b<sub>1</sub> +
* a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
* @see #linearCombination(Object, Object, Object, Object)
* @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
* @since 3.2
*/
T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3);
/**
* Compute a linear combination.
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @param a3 first factor of the third term
* @param b3 second factor of the third term
* @return a<sub>1</sub>&times;b<sub>1</sub> +
* a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
* @see #linearCombination(double, Object, double, Object)
* @see #linearCombination(double, Object, double, Object, double, Object, double, Object)
* @since 3.2
*/
T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3);
/**
* Compute a linear combination.
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @param a3 first factor of the third term
* @param b3 second factor of the third term
* @param a4 first factor of the third term
* @param b4 second factor of the third term
* @return a<sub>1</sub>&times;b<sub>1</sub> +
* a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
* a<sub>4</sub>&times;b<sub>4</sub>
* @see #linearCombination(Object, Object, Object, Object)
* @see #linearCombination(Object, Object, Object, Object, Object, Object)
* @since 3.2
*/
T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3, T a4, T b4);
/**
* Compute a linear combination.
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @param a3 first factor of the third term
* @param b3 second factor of the third term
* @param a4 first factor of the third term
* @param b4 second factor of the third term
* @return a<sub>1</sub>&times;b<sub>1</sub> +
* a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
* a<sub>4</sub>&times;b<sub>4</sub>
* @see #linearCombination(double, Object, double, Object)
* @see #linearCombination(double, Object, double, Object, double, Object)
* @since 3.2
*/
T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3, double a4, T b4);
}

35
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/BivariateFunction.java

@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a bivariate real function.
*
* @since 2.1
*/
public interface BivariateFunction {
/**
* Compute the value for the function.
*
* @param x Abscissa for which the function value should be computed.
* @param y Ordinate for which the function value should be computed.
* @return the value.
*/
double value(double x, double y);
}

54
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableMultivariateFunction.java

@ -0,0 +1,54 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
/**
* Extension of {@link MultivariateFunction} representing a differentiable
* multivariate real function.
* @since 2.0
* @deprecated as of 3.1 replaced by {@link MultivariateDifferentiableFunction}
*/
@Deprecated
public interface DifferentiableMultivariateFunction extends MultivariateFunction {
/**
* Returns the partial derivative of the function with respect to a point coordinate.
* <p>
* The partial derivative is defined with respect to point coordinate
* x<sub>k</sub>. If the partial derivatives with respect to all coordinates are
* needed, it may be more efficient to use the {@link #gradient()} method which will
* compute them all at once.
* </p>
* @param k index of the coordinate with respect to which the partial
* derivative is computed
* @return the partial derivative function with respect to k<sup>th</sup> point coordinate
*/
MultivariateFunction partialDerivative(int k);
/**
* Returns the gradient function.
* <p>If only one partial derivative with respect to a specific coordinate is
* needed, it may be more efficient to use the {@link #partialDerivative(int)} method
* which will compute only the specified component.</p>
* @return the gradient function
*/
MultivariateVectorFunction gradient();
}

38
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableMultivariateVectorFunction.java

@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
/**
* Extension of {@link MultivariateVectorFunction} representing a differentiable
* multivariate vectorial function.
* @since 2.0
* @deprecated as of 3.1 replaced by {@link MultivariateDifferentiableVectorFunction}
*/
@Deprecated
public interface DifferentiableMultivariateVectorFunction
extends MultivariateVectorFunction {
/**
* Returns the jacobian function.
* @return the jacobian function
*/
MultivariateMatrixFunction jacobian();
}

37
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableUnivariateFunction.java

@ -0,0 +1,37 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
/**
* Extension of {@link UnivariateFunction} representing a differentiable univariate real function.
*
* @deprecated as of 3.1 replaced by {@link UnivariateDifferentiableFunction}
*/
@Deprecated
public interface DifferentiableUnivariateFunction
extends UnivariateFunction {
/**
* Returns the derivative of the function
*
* @return the derivative function
*/
UnivariateFunction derivative();
}

38
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableUnivariateMatrixFunction.java

@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableMatrixFunction;
/**
* Extension of {@link UnivariateMatrixFunction} representing a differentiable univariate matrix function.
*
* @since 2.0
* @deprecated as of 3.1 replaced by {@link UnivariateDifferentiableMatrixFunction}
*/
@Deprecated
public interface DifferentiableUnivariateMatrixFunction
extends UnivariateMatrixFunction {
/**
* Returns the derivative of the function
*
* @return the derivative function
*/
UnivariateMatrixFunction derivative();
}

38
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/DifferentiableUnivariateVectorFunction.java

@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableVectorFunction;
/**
* Extension of {@link UnivariateVectorFunction} representing a differentiable univariate vectorial function.
*
* @since 2.0
* @deprecated as of 3.1 replaced by {@link UnivariateDifferentiableVectorFunction}
*/
@Deprecated
public interface DifferentiableUnivariateVectorFunction
extends UnivariateVectorFunction {
/**
* Returns the derivative of the function
*
* @return the derivative function
*/
UnivariateVectorFunction derivative();
}

806
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/FunctionUtils.java

@ -0,0 +1,806 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.function.Identity;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooLargeException;
import com.fr.third.org.apache.commons.math3.exception.util.LocalizedFormats;
/**
* Utilities for manipulating function objects.
*
* @since 3.0
*/
public class FunctionUtils {
/**
* Class only contains static methods.
*/
private FunctionUtils() {}
/**
* Composes functions.
* <p>
* The functions in the argument list are composed sequentially, in the
* given order. For example, compose(f1,f2,f3) acts like f1(f2(f3(x))).</p>
*
* @param f List of functions.
* @return the composite function.
*/
public static UnivariateFunction compose(final UnivariateFunction ... f) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = x;
for (int i = f.length - 1; i >= 0; i--) {
r = f[i].value(r);
}
return r;
}
};
}
/**
* Composes functions.
* <p>
* The functions in the argument list are composed sequentially, in the
* given order. For example, compose(f1,f2,f3) acts like f1(f2(f3(x))).</p>
*
* @param f List of functions.
* @return the composite function.
* @since 3.1
*/
public static UnivariateDifferentiableFunction compose(final UnivariateDifferentiableFunction ... f) {
return new UnivariateDifferentiableFunction() {
/** {@inheritDoc} */
public double value(final double t) {
double r = t;
for (int i = f.length - 1; i >= 0; i--) {
r = f[i].value(r);
}
return r;
}
/** {@inheritDoc} */
public DerivativeStructure value(final DerivativeStructure t) {
DerivativeStructure r = t;
for (int i = f.length - 1; i >= 0; i--) {
r = f[i].value(r);
}
return r;
}
};
}
/**
* Composes functions.
* <p>
* The functions in the argument list are composed sequentially, in the
* given order. For example, compose(f1,f2,f3) acts like f1(f2(f3(x))).</p>
*
* @param f List of functions.
* @return the composite function.
* @deprecated as of 3.1 replaced by {@link #compose(UnivariateDifferentiableFunction...)}
*/
@Deprecated
public static DifferentiableUnivariateFunction compose(final DifferentiableUnivariateFunction ... f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = x;
for (int i = f.length - 1; i >= 0; i--) {
r = f[i].value(r);
}
return r;
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double p = 1;
double r = x;
for (int i = f.length - 1; i >= 0; i--) {
p *= f[i].derivative().value(r);
r = f[i].value(r);
}
return p;
}
};
}
};
}
/**
* Adds functions.
*
* @param f List of functions.
* @return a function that computes the sum of the functions.
*/
public static UnivariateFunction add(final UnivariateFunction ... f) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r += f[i].value(x);
}
return r;
}
};
}
/**
* Adds functions.
*
* @param f List of functions.
* @return a function that computes the sum of the functions.
* @since 3.1
*/
public static UnivariateDifferentiableFunction add(final UnivariateDifferentiableFunction ... f) {
return new UnivariateDifferentiableFunction() {
/** {@inheritDoc} */
public double value(final double t) {
double r = f[0].value(t);
for (int i = 1; i < f.length; i++) {
r += f[i].value(t);
}
return r;
}
/** {@inheritDoc}
* @throws DimensionMismatchException if functions are not consistent with each other
*/
public DerivativeStructure value(final DerivativeStructure t)
throws DimensionMismatchException {
DerivativeStructure r = f[0].value(t);
for (int i = 1; i < f.length; i++) {
r = r.add(f[i].value(t));
}
return r;
}
};
}
/**
* Adds functions.
*
* @param f List of functions.
* @return a function that computes the sum of the functions.
* @deprecated as of 3.1 replaced by {@link #add(UnivariateDifferentiableFunction...)}
*/
@Deprecated
public static DifferentiableUnivariateFunction add(final DifferentiableUnivariateFunction ... f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r += f[i].value(x);
}
return r;
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].derivative().value(x);
for (int i = 1; i < f.length; i++) {
r += f[i].derivative().value(x);
}
return r;
}
};
}
};
}
/**
* Multiplies functions.
*
* @param f List of functions.
* @return a function that computes the product of the functions.
*/
public static UnivariateFunction multiply(final UnivariateFunction ... f) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r *= f[i].value(x);
}
return r;
}
};
}
/**
* Multiplies functions.
*
* @param f List of functions.
* @return a function that computes the product of the functions.
* @since 3.1
*/
public static UnivariateDifferentiableFunction multiply(final UnivariateDifferentiableFunction ... f) {
return new UnivariateDifferentiableFunction() {
/** {@inheritDoc} */
public double value(final double t) {
double r = f[0].value(t);
for (int i = 1; i < f.length; i++) {
r *= f[i].value(t);
}
return r;
}
/** {@inheritDoc} */
public DerivativeStructure value(final DerivativeStructure t) {
DerivativeStructure r = f[0].value(t);
for (int i = 1; i < f.length; i++) {
r = r.multiply(f[i].value(t));
}
return r;
}
};
}
/**
* Multiplies functions.
*
* @param f List of functions.
* @return a function that computes the product of the functions.
* @deprecated as of 3.1 replaced by {@link #multiply(UnivariateDifferentiableFunction...)}
*/
@Deprecated
public static DifferentiableUnivariateFunction multiply(final DifferentiableUnivariateFunction ... f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r *= f[i].value(x);
}
return r;
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double sum = 0;
for (int i = 0; i < f.length; i++) {
double prod = f[i].derivative().value(x);
for (int j = 0; j < f.length; j++) {
if (i != j) {
prod *= f[j].value(x);
}
}
sum += prod;
}
return sum;
}
};
}
};
}
/**
* Returns the univariate function
* {@code h(x) = combiner(f(x), g(x)).}
*
* @param combiner Combiner function.
* @param f Function.
* @param g Function.
* @return the composite function.
*/
public static UnivariateFunction combine(final BivariateFunction combiner,
final UnivariateFunction f,
final UnivariateFunction g) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
return combiner.value(f.value(x), g.value(x));
}
};
}
/**
* Returns a MultivariateFunction h(x[]) defined by <pre> <code>
* h(x[]) = combiner(...combiner(combiner(initialValue,f(x[0])),f(x[1]))...),f(x[x.length-1]))
* </code></pre>
*
* @param combiner Combiner function.
* @param f Function.
* @param initialValue Initial value.
* @return a collector function.
*/
public static MultivariateFunction collector(final BivariateFunction combiner,
final UnivariateFunction f,
final double initialValue) {
return new MultivariateFunction() {
/** {@inheritDoc} */
public double value(double[] point) {
double result = combiner.value(initialValue, f.value(point[0]));
for (int i = 1; i < point.length; i++) {
result = combiner.value(result, f.value(point[i]));
}
return result;
}
};
}
/**
* Returns a MultivariateFunction h(x[]) defined by <pre> <code>
* h(x[]) = combiner(...combiner(combiner(initialValue,x[0]),x[1])...),x[x.length-1])
* </code></pre>
*
* @param combiner Combiner function.
* @param initialValue Initial value.
* @return a collector function.
*/
public static MultivariateFunction collector(final BivariateFunction combiner,
final double initialValue) {
return collector(combiner, new Identity(), initialValue);
}
/**
* Creates a unary function by fixing the first argument of a binary function.
*
* @param f Binary function.
* @param fixed value to which the first argument of {@code f} is set.
* @return the unary function h(x) = f(fixed, x)
*/
public static UnivariateFunction fix1stArgument(final BivariateFunction f,
final double fixed) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
return f.value(fixed, x);
}
};
}
/**
* Creates a unary function by fixing the second argument of a binary function.
*
* @param f Binary function.
* @param fixed value to which the second argument of {@code f} is set.
* @return the unary function h(x) = f(x, fixed)
*/
public static UnivariateFunction fix2ndArgument(final BivariateFunction f,
final double fixed) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
return f.value(x, fixed);
}
};
}
/**
* Samples the specified univariate real function on the specified interval.
* <p>
* The interval is divided equally into {@code n} sections and sample points
* are taken from {@code min} to {@code max - (max - min) / n}; therefore
* {@code f} is not sampled at the upper bound {@code max}.</p>
*
* @param f Function to be sampled
* @param min Lower bound of the interval (included).
* @param max Upper bound of the interval (excluded).
* @param n Number of sample points.
* @return the array of samples.
* @throws NumberIsTooLargeException if the lower bound {@code min} is
* greater than, or equal to the upper bound {@code max}.
* @throws NotStrictlyPositiveException if the number of sample points
* {@code n} is negative.
*/
public static double[] sample(UnivariateFunction f, double min, double max, int n)
throws NumberIsTooLargeException, NotStrictlyPositiveException {
if (n <= 0) {
throw new NotStrictlyPositiveException(
LocalizedFormats.NOT_POSITIVE_NUMBER_OF_SAMPLES,
Integer.valueOf(n));
}
if (min >= max) {
throw new NumberIsTooLargeException(min, max, false);
}
final double[] s = new double[n];
final double h = (max - min) / n;
for (int i = 0; i < n; i++) {
s[i] = f.value(min + i * h);
}
return s;
}
/**
* Convert a {@link UnivariateDifferentiableFunction} into a {@link DifferentiableUnivariateFunction}.
*
* @param f function to convert
* @return converted function
* @deprecated this conversion method is temporary in version 3.1, as the {@link
* DifferentiableUnivariateFunction} interface itself is deprecated
*/
@Deprecated
public static DifferentiableUnivariateFunction toDifferentiableUnivariateFunction(final UnivariateDifferentiableFunction f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(final double x) {
return f.value(x);
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(final double x) {
return f.value(new DerivativeStructure(1, 1, 0, x)).getPartialDerivative(1);
}
};
}
};
}
/**
* Convert a {@link DifferentiableUnivariateFunction} into a {@link UnivariateDifferentiableFunction}.
* <p>
* Note that the converted function is able to handle {@link DerivativeStructure} up to order one.
* If the function is called with higher order, a {@link NumberIsTooLargeException} is thrown.
* </p>
* @param f function to convert
* @return converted function
* @deprecated this conversion method is temporary in version 3.1, as the {@link
* DifferentiableUnivariateFunction} interface itself is deprecated
*/
@Deprecated
public static UnivariateDifferentiableFunction toUnivariateDifferential(final DifferentiableUnivariateFunction f) {
return new UnivariateDifferentiableFunction() {
/** {@inheritDoc} */
public double value(final double x) {
return f.value(x);
}
/** {@inheritDoc}
* @exception NumberIsTooLargeException if derivation order is greater than 1
*/
public DerivativeStructure value(final DerivativeStructure t)
throws NumberIsTooLargeException {
switch (t.getOrder()) {
case 0 :
return new DerivativeStructure(t.getFreeParameters(), 0, f.value(t.getValue()));
case 1 : {
final int parameters = t.getFreeParameters();
final double[] derivatives = new double[parameters + 1];
derivatives[0] = f.value(t.getValue());
final double fPrime = f.derivative().value(t.getValue());
int[] orders = new int[parameters];
for (int i = 0; i < parameters; ++i) {
orders[i] = 1;
derivatives[i + 1] = fPrime * t.getPartialDerivative(orders);
orders[i] = 0;
}
return new DerivativeStructure(parameters, 1, derivatives);
}
default :
throw new NumberIsTooLargeException(t.getOrder(), 1, true);
}
}
};
}
/**
* Convert a {@link MultivariateDifferentiableFunction} into a {@link DifferentiableMultivariateFunction}.
*
* @param f function to convert
* @return converted function
* @deprecated this conversion method is temporary in version 3.1, as the {@link
* DifferentiableMultivariateFunction} interface itself is deprecated
*/
@Deprecated
public static DifferentiableMultivariateFunction toDifferentiableMultivariateFunction(final MultivariateDifferentiableFunction f) {
return new DifferentiableMultivariateFunction() {
/** {@inheritDoc} */
public double value(final double[] x) {
return f.value(x);
}
/** {@inheritDoc} */
public MultivariateFunction partialDerivative(final int k) {
return new MultivariateFunction() {
/** {@inheritDoc} */
public double value(final double[] x) {
final int n = x.length;
// delegate computation to underlying function
final DerivativeStructure[] dsX = new DerivativeStructure[n];
for (int i = 0; i < n; ++i) {
if (i == k) {
dsX[i] = new DerivativeStructure(1, 1, 0, x[i]);
} else {
dsX[i] = new DerivativeStructure(1, 1, x[i]);
}
}
final DerivativeStructure y = f.value(dsX);
// extract partial derivative
return y.getPartialDerivative(1);
}
};
}
/** {@inheritDoc} */
public MultivariateVectorFunction gradient() {
return new MultivariateVectorFunction() {
/** {@inheritDoc} */
public double[] value(final double[] x) {
final int n = x.length;
// delegate computation to underlying function
final DerivativeStructure[] dsX = new DerivativeStructure[n];
for (int i = 0; i < n; ++i) {
dsX[i] = new DerivativeStructure(n, 1, i, x[i]);
}
final DerivativeStructure y = f.value(dsX);
// extract gradient
final double[] gradient = new double[n];
final int[] orders = new int[n];
for (int i = 0; i < n; ++i) {
orders[i] = 1;
gradient[i] = y.getPartialDerivative(orders);
orders[i] = 0;
}
return gradient;
}
};
}
};
}
/**
* Convert a {@link DifferentiableMultivariateFunction} into a {@link MultivariateDifferentiableFunction}.
* <p>
* Note that the converted function is able to handle {@link DerivativeStructure} elements
* that all have the same number of free parameters and order, and with order at most 1.
* If the function is called with inconsistent numbers of free parameters or higher order, a
* {@link DimensionMismatchException} or a {@link NumberIsTooLargeException} will be thrown.
* </p>
* @param f function to convert
* @return converted function
* @deprecated this conversion method is temporary in version 3.1, as the {@link
* DifferentiableMultivariateFunction} interface itself is deprecated
*/
@Deprecated
public static MultivariateDifferentiableFunction toMultivariateDifferentiableFunction(final DifferentiableMultivariateFunction f) {
return new MultivariateDifferentiableFunction() {
/** {@inheritDoc} */
public double value(final double[] x) {
return f.value(x);
}
/** {@inheritDoc}
* @exception NumberIsTooLargeException if derivation order is higher than 1
* @exception DimensionMismatchException if numbers of free parameters are inconsistent
*/
public DerivativeStructure value(final DerivativeStructure[] t)
throws DimensionMismatchException, NumberIsTooLargeException {
// check parameters and orders limits
final int parameters = t[0].getFreeParameters();
final int order = t[0].getOrder();
final int n = t.length;
if (order > 1) {
throw new NumberIsTooLargeException(order, 1, true);
}
// check all elements in the array are consistent
for (int i = 0; i < n; ++i) {
if (t[i].getFreeParameters() != parameters) {
throw new DimensionMismatchException(t[i].getFreeParameters(), parameters);
}
if (t[i].getOrder() != order) {
throw new DimensionMismatchException(t[i].getOrder(), order);
}
}
// delegate computation to underlying function
final double[] point = new double[n];
for (int i = 0; i < n; ++i) {
point[i] = t[i].getValue();
}
final double value = f.value(point);
final double[] gradient = f.gradient().value(point);
// merge value and gradient into one DerivativeStructure
final double[] derivatives = new double[parameters + 1];
derivatives[0] = value;
final int[] orders = new int[parameters];
for (int i = 0; i < parameters; ++i) {
orders[i] = 1;
for (int j = 0; j < n; ++j) {
derivatives[i + 1] += gradient[j] * t[j].getPartialDerivative(orders);
}
orders[i] = 0;
}
return new DerivativeStructure(parameters, order, derivatives);
}
};
}
/**
* Convert a {@link MultivariateDifferentiableVectorFunction} into a {@link DifferentiableMultivariateVectorFunction}.
*
* @param f function to convert
* @return converted function
* @deprecated this conversion method is temporary in version 3.1, as the {@link
* DifferentiableMultivariateVectorFunction} interface itself is deprecated
*/
@Deprecated
public static DifferentiableMultivariateVectorFunction toDifferentiableMultivariateVectorFunction(final MultivariateDifferentiableVectorFunction f) {
return new DifferentiableMultivariateVectorFunction() {
/** {@inheritDoc} */
public double[] value(final double[] x) {
return f.value(x);
}
/** {@inheritDoc} */
public MultivariateMatrixFunction jacobian() {
return new MultivariateMatrixFunction() {
/** {@inheritDoc} */
public double[][] value(final double[] x) {
final int n = x.length;
// delegate computation to underlying function
final DerivativeStructure[] dsX = new DerivativeStructure[n];
for (int i = 0; i < n; ++i) {
dsX[i] = new DerivativeStructure(n, 1, i, x[i]);
}
final DerivativeStructure[] y = f.value(dsX);
// extract Jacobian
final double[][] jacobian = new double[y.length][n];
final int[] orders = new int[n];
for (int i = 0; i < y.length; ++i) {
for (int j = 0; j < n; ++j) {
orders[j] = 1;
jacobian[i][j] = y[i].getPartialDerivative(orders);
orders[j] = 0;
}
}
return jacobian;
}
};
}
};
}
/**
* Convert a {@link DifferentiableMultivariateVectorFunction} into a {@link MultivariateDifferentiableVectorFunction}.
* <p>
* Note that the converted function is able to handle {@link DerivativeStructure} elements
* that all have the same number of free parameters and order, and with order at most 1.
* If the function is called with inconsistent numbers of free parameters or higher order, a
* {@link DimensionMismatchException} or a {@link NumberIsTooLargeException} will be thrown.
* </p>
* @param f function to convert
* @return converted function
* @deprecated this conversion method is temporary in version 3.1, as the {@link
* DifferentiableMultivariateFunction} interface itself is deprecated
*/
@Deprecated
public static MultivariateDifferentiableVectorFunction toMultivariateDifferentiableVectorFunction(final DifferentiableMultivariateVectorFunction f) {
return new MultivariateDifferentiableVectorFunction() {
/** {@inheritDoc} */
public double[] value(final double[] x) {
return f.value(x);
}
/** {@inheritDoc}
* @exception NumberIsTooLargeException if derivation order is higher than 1
* @exception DimensionMismatchException if numbers of free parameters are inconsistent
*/
public DerivativeStructure[] value(final DerivativeStructure[] t)
throws DimensionMismatchException, NumberIsTooLargeException {
// check parameters and orders limits
final int parameters = t[0].getFreeParameters();
final int order = t[0].getOrder();
final int n = t.length;
if (order > 1) {
throw new NumberIsTooLargeException(order, 1, true);
}
// check all elements in the array are consistent
for (int i = 0; i < n; ++i) {
if (t[i].getFreeParameters() != parameters) {
throw new DimensionMismatchException(t[i].getFreeParameters(), parameters);
}
if (t[i].getOrder() != order) {
throw new DimensionMismatchException(t[i].getOrder(), order);
}
}
// delegate computation to underlying function
final double[] point = new double[n];
for (int i = 0; i < n; ++i) {
point[i] = t[i].getValue();
}
final double[] value = f.value(point);
final double[][] jacobian = f.jacobian().value(point);
// merge value and Jacobian into a DerivativeStructure array
final DerivativeStructure[] merged = new DerivativeStructure[value.length];
for (int k = 0; k < merged.length; ++k) {
final double[] derivatives = new double[parameters + 1];
derivatives[0] = value[k];
final int[] orders = new int[parameters];
for (int i = 0; i < parameters; ++i) {
orders[i] = 1;
for (int j = 0; j < n; ++j) {
derivatives[i + 1] += jacobian[k][j] * t[j].getPartialDerivative(orders);
}
orders[i] = 0;
}
merged[k] = new DerivativeStructure(parameters, order, derivatives);
}
return merged;
}
};
}
}

45
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/MultivariateFunction.java

@ -0,0 +1,45 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
/**
* An interface representing a multivariate real function.
*
* @since 2.0
*/
public interface MultivariateFunction {
/**
* Compute the value for the function at the given point.
*
* @param point Point at which the function must be evaluated.
* @return the function value for the given point.
* @throws DimensionMismatchException
* if the parameter's dimension is wrong for the function being evaluated.
* @throws MathIllegalArgumentException
* when the activated method itself can ascertain that preconditions,
* specified in the API expressed at the level of the activated method,
* have been violated. In the vast majority of cases where Commons Math
* throws this exception, it is the result of argument checking of actual
* parameters immediately passed to a method.
*/
double value(double[] point);
}

35
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/MultivariateMatrixFunction.java

@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a multivariate matrix function.
* @since 2.0
*/
public interface MultivariateMatrixFunction {
/**
* Compute the value for the function at the given point.
* @param point point at which the function must be evaluated
* @return function value for the given point
* @exception IllegalArgumentException if point's dimension is wrong
*/
double[][] value(double[] point)
throws IllegalArgumentException;
}

35
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/MultivariateVectorFunction.java

@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a multivariate vectorial function.
* @since 2.0
*/
public interface MultivariateVectorFunction {
/**
* Compute the value for the function at the given point.
* @param point point at which the function must be evaluated
* @return function value for the given point
* @exception IllegalArgumentException if point's dimension is wrong
*/
double[] value(double[] point)
throws IllegalArgumentException;
}

44
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/ParametricUnivariateFunction.java

@ -0,0 +1,44 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a real function that depends on one independent
* variable plus some extra parameters.
*
* @since 3.0
*/
public interface ParametricUnivariateFunction {
/**
* Compute the value of the function.
*
* @param x Point for which the function value should be computed.
* @param parameters Function parameters.
* @return the value.
*/
double value(double x, double ... parameters);
/**
* Compute the gradient of the function with respect to its parameters.
*
* @param x Point for which the function value should be computed.
* @param parameters Function parameters.
* @return the value.
*/
double[] gradient(double x, double ... parameters);
}

86
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/RealFieldUnivariateFunction.java

@ -0,0 +1,86 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
import com.fr.third.org.apache.commons.math3.RealFieldElement;
/**
* An interface representing a univariate real function.
* <p>
* When a <em>user-defined</em> function encounters an error during
* evaluation, the {@link #value(RealFieldElement) value} method should throw a
* <em>user-defined</em> unchecked exception.</p>
* <p>
* The following code excerpt shows the recommended way to do that using
* a root solver as an example, but the same construct is applicable to
* ODE integrators or optimizers.</p>
*
* <pre>
* private static class LocalException extends RuntimeException {
* // The x value that caused the problem.
* private final SomeFieldType x;
*
* public LocalException(SomeFieldType x) {
* this.x = x;
* }
*
* public double getX() {
* return x;
* }
* }
*
* private static class MyFunction implements FieldUnivariateFunction&lt;SomeFieldType&gt; {
* public SomeFieldType value(SomeFieldType x) {
* SomeFieldType y = hugeFormula(x);
* if (somethingBadHappens) {
* throw new LocalException(x);
* }
* return y;
* }
* }
*
* public void compute() {
* try {
* solver.solve(maxEval, new MyFunction(a, b, c), min, max);
* } catch (LocalException le) {
* // Retrieve the x value.
* }
* }
* </pre>
*
* As shown, the exception is local to the user's code and it is guaranteed
* that Apache Commons Math will not catch it.
*
* @param <T> the type of the field elements
* @since 3.6
* @see UnivariateFunction
*/
public interface RealFieldUnivariateFunction<T extends RealFieldElement<T>> {
/**
* Compute the value of the function.
*
* @param x Point at which the function value should be computed.
* @return the value of the function.
* @throws IllegalArgumentException when the activated method itself can
* ascertain that a precondition, specified in the API expressed at the
* level of the activated method, has been violated.
* When Commons Math throws an {@code IllegalArgumentException}, it is
* usually the consequence of checking the actual parameters passed to
* the method.
*/
T value(T x);
}

35
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/TrivariateFunction.java

@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a trivariate real function.
*
* @since 2.2
*/
public interface TrivariateFunction {
/**
* Compute the value for the function.
*
* @param x x-coordinate for which the function value should be computed.
* @param y y-coordinate for which the function value should be computed.
* @param z z-coordinate for which the function value should be computed.
* @return the value.
*/
double value(double x, double y, double z);
}

81
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/UnivariateFunction.java

@ -0,0 +1,81 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a univariate real function.
* <p>
* When a <em>user-defined</em> function encounters an error during
* evaluation, the {@link #value(double) value} method should throw a
* <em>user-defined</em> unchecked exception.</p>
* <p>
* The following code excerpt shows the recommended way to do that using
* a root solver as an example, but the same construct is applicable to
* ODE integrators or optimizers.</p>
*
* <pre>
* private static class LocalException extends RuntimeException {
* // The x value that caused the problem.
* private final double x;
*
* public LocalException(double x) {
* this.x = x;
* }
*
* public double getX() {
* return x;
* }
* }
*
* private static class MyFunction implements UnivariateFunction {
* public double value(double x) {
* double y = hugeFormula(x);
* if (somethingBadHappens) {
* throw new LocalException(x);
* }
* return y;
* }
* }
*
* public void compute() {
* try {
* solver.solve(maxEval, new MyFunction(a, b, c), min, max);
* } catch (LocalException le) {
* // Retrieve the x value.
* }
* }
* </pre>
*
* As shown, the exception is local to the user's code and it is guaranteed
* that Apache Commons Math will not catch it.
*
*/
public interface UnivariateFunction {
/**
* Compute the value of the function.
*
* @param x Point at which the function value should be computed.
* @return the value of the function.
* @throws IllegalArgumentException when the activated method itself can
* ascertain that a precondition, specified in the API expressed at the
* level of the activated method, has been violated.
* When Commons Math throws an {@code IllegalArgumentException}, it is
* usually the consequence of checking the actual parameters passed to
* the method.
*/
double value(double x);
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/UnivariateMatrixFunction.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a univariate matrix function.
*
* @since 2.0
*/
public interface UnivariateMatrixFunction {
/**
* Compute the value for the function.
* @param x the point for which the function value should be computed
* @return the value
*/
double[][] value(double x);
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/UnivariateVectorFunction.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis;
/**
* An interface representing a univariate vectorial function.
*
* @since 2.0
*/
public interface UnivariateVectorFunction {
/**
* Compute the value for the function.
* @param x the point for which the function value should be computed
* @return the value
*/
double[] value(double x);
}

1820
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/DSCompiler.java

File diff suppressed because it is too large Load Diff

1195
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/DerivativeStructure.java

File diff suppressed because it is too large Load Diff

384
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/FiniteDifferencesDifferentiator.java

@ -0,0 +1,384 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import java.io.Serializable;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.NotPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooLargeException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateMatrixFunction;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateVectorFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/** Univariate functions differentiator using finite differences.
* <p>
* This class creates some wrapper objects around regular
* {@link UnivariateFunction univariate functions} (or {@link
* UnivariateVectorFunction univariate vector functions} or {@link
* UnivariateMatrixFunction univariate matrix functions}). These
* wrapper objects compute derivatives in addition to function
* values.
* </p>
* <p>
* The wrapper objects work by calling the underlying function on
* a sampling grid around the current point and performing polynomial
* interpolation. A finite differences scheme with n points is
* theoretically able to compute derivatives up to order n-1, but
* it is generally better to have a slight margin. The step size must
* also be small enough in order for the polynomial approximation to
* be good in the current point neighborhood, but it should not be too
* small because numerical instability appears quickly (there are several
* differences of close points). Choosing the number of points and
* the step size is highly problem dependent.
* </p>
* <p>
* As an example of good and bad settings, lets consider the quintic
* polynomial function {@code f(x) = (x-1)*(x-0.5)*x*(x+0.5)*(x+1)}.
* Since it is a polynomial, finite differences with at least 6 points
* should theoretically recover the exact same polynomial and hence
* compute accurate derivatives for any order. However, due to numerical
* errors, we get the following results for a 7 points finite differences
* for abscissae in the [-10, 10] range:
* <ul>
* <li>step size = 0.25, second order derivative error about 9.97e-10</li>
* <li>step size = 0.25, fourth order derivative error about 5.43e-8</li>
* <li>step size = 1.0e-6, second order derivative error about 148</li>
* <li>step size = 1.0e-6, fourth order derivative error about 6.35e+14</li>
* </ul>
* <p>
* This example shows that the small step size is really bad, even simply
* for second order derivative!</p>
*
* @since 3.1
*/
public class FiniteDifferencesDifferentiator
implements UnivariateFunctionDifferentiator, UnivariateVectorFunctionDifferentiator,
UnivariateMatrixFunctionDifferentiator, Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20120917L;
/** Number of points to use. */
private final int nbPoints;
/** Step size. */
private final double stepSize;
/** Half sample span. */
private final double halfSampleSpan;
/** Lower bound for independent variable. */
private final double tMin;
/** Upper bound for independent variable. */
private final double tMax;
/**
* Build a differentiator with number of points and step size when independent variable is unbounded.
* <p>
* Beware that wrong settings for the finite differences differentiator
* can lead to highly unstable and inaccurate results, especially for
* high derivation orders. Using very small step sizes is often a
* <em>bad</em> idea.
* </p>
* @param nbPoints number of points to use
* @param stepSize step size (gap between each point)
* @exception NotPositiveException if {@code stepsize <= 0} (note that
* {@link NotPositiveException} extends {@link NumberIsTooSmallException})
* @exception NumberIsTooSmallException {@code nbPoint <= 1}
*/
public FiniteDifferencesDifferentiator(final int nbPoints, final double stepSize)
throws NotPositiveException, NumberIsTooSmallException {
this(nbPoints, stepSize, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
}
/**
* Build a differentiator with number of points and step size when independent variable is bounded.
* <p>
* When the independent variable is bounded (tLower &lt; t &lt; tUpper), the sampling
* points used for differentiation will be adapted to ensure the constraint holds
* even near the boundaries. This means the sample will not be centered anymore in
* these cases. At an extreme case, computing derivatives exactly at the lower bound
* will lead the sample to be entirely on the right side of the derivation point.
* </p>
* <p>
* Note that the boundaries are considered to be excluded for function evaluation.
* </p>
* <p>
* Beware that wrong settings for the finite differences differentiator
* can lead to highly unstable and inaccurate results, especially for
* high derivation orders. Using very small step sizes is often a
* <em>bad</em> idea.
* </p>
* @param nbPoints number of points to use
* @param stepSize step size (gap between each point)
* @param tLower lower bound for independent variable (may be {@code Double.NEGATIVE_INFINITY}
* if there are no lower bounds)
* @param tUpper upper bound for independent variable (may be {@code Double.POSITIVE_INFINITY}
* if there are no upper bounds)
* @exception NotPositiveException if {@code stepsize <= 0} (note that
* {@link NotPositiveException} extends {@link NumberIsTooSmallException})
* @exception NumberIsTooSmallException {@code nbPoint <= 1}
* @exception NumberIsTooLargeException {@code stepSize * (nbPoints - 1) >= tUpper - tLower}
*/
public FiniteDifferencesDifferentiator(final int nbPoints, final double stepSize,
final double tLower, final double tUpper)
throws NotPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
if (nbPoints <= 1) {
throw new NumberIsTooSmallException(stepSize, 1, false);
}
this.nbPoints = nbPoints;
if (stepSize <= 0) {
throw new NotPositiveException(stepSize);
}
this.stepSize = stepSize;
halfSampleSpan = 0.5 * stepSize * (nbPoints - 1);
if (2 * halfSampleSpan >= tUpper - tLower) {
throw new NumberIsTooLargeException(2 * halfSampleSpan, tUpper - tLower, false);
}
final double safety = FastMath.ulp(halfSampleSpan);
this.tMin = tLower + halfSampleSpan + safety;
this.tMax = tUpper - halfSampleSpan - safety;
}
/**
* Get the number of points to use.
* @return number of points to use
*/
public int getNbPoints() {
return nbPoints;
}
/**
* Get the step size.
* @return step size
*/
public double getStepSize() {
return stepSize;
}
/**
* Evaluate derivatives from a sample.
* <p>
* Evaluation is done using divided differences.
* </p>
* @param t evaluation abscissa value and derivatives
* @param t0 first sample point abscissa
* @param y function values sample {@code y[i] = f(t[i]) = f(t0 + i * stepSize)}
* @return value and derivatives at {@code t}
* @exception NumberIsTooLargeException if the requested derivation order
* is larger or equal to the number of points
*/
private DerivativeStructure evaluate(final DerivativeStructure t, final double t0,
final double[] y)
throws NumberIsTooLargeException {
// create divided differences diagonal arrays
final double[] top = new double[nbPoints];
final double[] bottom = new double[nbPoints];
for (int i = 0; i < nbPoints; ++i) {
// update the bottom diagonal of the divided differences array
bottom[i] = y[i];
for (int j = 1; j <= i; ++j) {
bottom[i - j] = (bottom[i - j + 1] - bottom[i - j]) / (j * stepSize);
}
// update the top diagonal of the divided differences array
top[i] = bottom[0];
}
// evaluate interpolation polynomial (represented by top diagonal) at t
final int order = t.getOrder();
final int parameters = t.getFreeParameters();
final double[] derivatives = t.getAllDerivatives();
final double dt0 = t.getValue() - t0;
DerivativeStructure interpolation = new DerivativeStructure(parameters, order, 0.0);
DerivativeStructure monomial = null;
for (int i = 0; i < nbPoints; ++i) {
if (i == 0) {
// start with monomial(t) = 1
monomial = new DerivativeStructure(parameters, order, 1.0);
} else {
// monomial(t) = (t - t0) * (t - t1) * ... * (t - t(i-1))
derivatives[0] = dt0 - (i - 1) * stepSize;
final DerivativeStructure deltaX = new DerivativeStructure(parameters, order, derivatives);
monomial = monomial.multiply(deltaX);
}
interpolation = interpolation.add(monomial.multiply(top[i]));
}
return interpolation;
}
/** {@inheritDoc}
* <p>The returned object cannot compute derivatives to arbitrary orders. The
* value function will throw a {@link NumberIsTooLargeException} if the requested
* derivation order is larger or equal to the number of points.
* </p>
*/
public UnivariateDifferentiableFunction differentiate(final UnivariateFunction function) {
return new UnivariateDifferentiableFunction() {
/** {@inheritDoc} */
public double value(final double x) throws MathIllegalArgumentException {
return function.value(x);
}
/** {@inheritDoc} */
public DerivativeStructure value(final DerivativeStructure t)
throws MathIllegalArgumentException {
// check we can achieve the requested derivation order with the sample
if (t.getOrder() >= nbPoints) {
throw new NumberIsTooLargeException(t.getOrder(), nbPoints, false);
}
// compute sample position, trying to be centered if possible
final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
// compute sample points
final double[] y = new double[nbPoints];
for (int i = 0; i < nbPoints; ++i) {
y[i] = function.value(t0 + i * stepSize);
}
// evaluate derivatives
return evaluate(t, t0, y);
}
};
}
/** {@inheritDoc}
* <p>The returned object cannot compute derivatives to arbitrary orders. The
* value function will throw a {@link NumberIsTooLargeException} if the requested
* derivation order is larger or equal to the number of points.
* </p>
*/
public UnivariateDifferentiableVectorFunction differentiate(final UnivariateVectorFunction function) {
return new UnivariateDifferentiableVectorFunction() {
/** {@inheritDoc} */
public double[]value(final double x) throws MathIllegalArgumentException {
return function.value(x);
}
/** {@inheritDoc} */
public DerivativeStructure[] value(final DerivativeStructure t)
throws MathIllegalArgumentException {
// check we can achieve the requested derivation order with the sample
if (t.getOrder() >= nbPoints) {
throw new NumberIsTooLargeException(t.getOrder(), nbPoints, false);
}
// compute sample position, trying to be centered if possible
final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
// compute sample points
double[][] y = null;
for (int i = 0; i < nbPoints; ++i) {
final double[] v = function.value(t0 + i * stepSize);
if (i == 0) {
y = new double[v.length][nbPoints];
}
for (int j = 0; j < v.length; ++j) {
y[j][i] = v[j];
}
}
// evaluate derivatives
final DerivativeStructure[] value = new DerivativeStructure[y.length];
for (int j = 0; j < value.length; ++j) {
value[j] = evaluate(t, t0, y[j]);
}
return value;
}
};
}
/** {@inheritDoc}
* <p>The returned object cannot compute derivatives to arbitrary orders. The
* value function will throw a {@link NumberIsTooLargeException} if the requested
* derivation order is larger or equal to the number of points.
* </p>
*/
public UnivariateDifferentiableMatrixFunction differentiate(final UnivariateMatrixFunction function) {
return new UnivariateDifferentiableMatrixFunction() {
/** {@inheritDoc} */
public double[][] value(final double x) throws MathIllegalArgumentException {
return function.value(x);
}
/** {@inheritDoc} */
public DerivativeStructure[][] value(final DerivativeStructure t)
throws MathIllegalArgumentException {
// check we can achieve the requested derivation order with the sample
if (t.getOrder() >= nbPoints) {
throw new NumberIsTooLargeException(t.getOrder(), nbPoints, false);
}
// compute sample position, trying to be centered if possible
final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
// compute sample points
double[][][] y = null;
for (int i = 0; i < nbPoints; ++i) {
final double[][] v = function.value(t0 + i * stepSize);
if (i == 0) {
y = new double[v.length][v[0].length][nbPoints];
}
for (int j = 0; j < v.length; ++j) {
for (int k = 0; k < v[j].length; ++k) {
y[j][k][i] = v[j][k];
}
}
}
// evaluate derivatives
final DerivativeStructure[][] value = new DerivativeStructure[y.length][y[0].length];
for (int j = 0; j < value.length; ++j) {
for (int k = 0; k < y[j].length; ++k) {
value[j][k] = evaluate(t, t0, y[j][k]);
}
}
return value;
}
};
}
}

65
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/GradientFunction.java

@ -0,0 +1,65 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.analysis.MultivariateVectorFunction;
/** Class representing the gradient of a multivariate function.
* <p>
* The vectorial components of the function represent the derivatives
* with respect to each function parameters.
* </p>
* @since 3.1
*/
public class GradientFunction implements MultivariateVectorFunction {
/** Underlying real-valued function. */
private final MultivariateDifferentiableFunction f;
/** Simple constructor.
* @param f underlying real-valued function
*/
public GradientFunction(final MultivariateDifferentiableFunction f) {
this.f = f;
}
/** {@inheritDoc} */
public double[] value(double[] point) {
// set up parameters
final DerivativeStructure[] dsX = new DerivativeStructure[point.length];
for (int i = 0; i < point.length; ++i) {
dsX[i] = new DerivativeStructure(point.length, 1, i, point[i]);
}
// compute the derivatives
final DerivativeStructure dsY = f.value(dsX);
// extract the gradient
final double[] y = new double[point.length];
final int[] orders = new int[point.length];
for (int i = 0; i < point.length; ++i) {
orders[i] = 1;
y[i] = dsY.getPartialDerivative(orders);
orders[i] = 0;
}
return y;
}
}

69
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/JacobianFunction.java

@ -0,0 +1,69 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.analysis.MultivariateMatrixFunction;
/** Class representing the Jacobian of a multivariate vector function.
* <p>
* The rows iterate on the model functions while the columns iterate on the parameters; thus,
* the numbers of rows is equal to the dimension of the underlying function vector
* value and the number of columns is equal to the number of free parameters of
* the underlying function.
* </p>
* @since 3.1
*/
public class JacobianFunction implements MultivariateMatrixFunction {
/** Underlying vector-valued function. */
private final MultivariateDifferentiableVectorFunction f;
/** Simple constructor.
* @param f underlying vector-valued function
*/
public JacobianFunction(final MultivariateDifferentiableVectorFunction f) {
this.f = f;
}
/** {@inheritDoc} */
public double[][] value(double[] point) {
// set up parameters
final DerivativeStructure[] dsX = new DerivativeStructure[point.length];
for (int i = 0; i < point.length; ++i) {
dsX[i] = new DerivativeStructure(point.length, 1, i, point[i]);
}
// compute the derivatives
final DerivativeStructure[] dsY = f.value(dsX);
// extract the Jacobian
final double[][] y = new double[dsY.length][point.length];
final int[] orders = new int[point.length];
for (int i = 0; i < dsY.length; ++i) {
for (int j = 0; j < point.length; ++j) {
orders[j] = 1;
y[i][j] = dsY[i].getPartialDerivative(orders);
orders[j] = 0;
}
}
return y;
}
}

42
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/MultivariateDifferentiableFunction.java

@ -0,0 +1,42 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.MultivariateFunction;
/**
* Extension of {@link MultivariateFunction} representing a
* multivariate differentiable real function.
* @since 3.1
*/
public interface MultivariateDifferentiableFunction extends MultivariateFunction {
/**
* Compute the value for the function at the given point.
*
* @param point Point at which the function must be evaluated.
* @return the function value for the given point.
* @exception MathIllegalArgumentException if {@code point} does not
* satisfy the function's constraints (wrong dimension, argument out of bound,
* or unsupported derivative order for example)
*/
DerivativeStructure value(DerivativeStructure[] point)
throws MathIllegalArgumentException;
}

43
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/MultivariateDifferentiableVectorFunction.java

@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.MultivariateVectorFunction;
/**
* Extension of {@link MultivariateVectorFunction} representing a
* multivariate differentiable vectorial function.
* @since 3.1
*/
public interface MultivariateDifferentiableVectorFunction
extends MultivariateVectorFunction {
/**
* Compute the value for the function at the given point.
* @param point point at which the function must be evaluated
* @return function value for the given point
* @exception MathIllegalArgumentException if {@code point} does not
* satisfy the function's constraints (wrong dimension, argument out of bound,
* or unsupported derivative order for example)
*/
DerivativeStructure[] value(DerivativeStructure[] point)
throws MathIllegalArgumentException;
}

877
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/SparseGradient.java

@ -0,0 +1,877 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import java.io.Serializable;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.Field;
import com.fr.third.org.apache.commons.math3.FieldElement;
import com.fr.third.org.apache.commons.math3.RealFieldElement;
import com.fr.third.org.apache.commons.math3.util.FastMath;
import com.fr.third.org.apache.commons.math3.util.MathArrays;
import com.fr.third.org.apache.commons.math3.util.MathUtils;
import com.fr.third.org.apache.commons.math3.util.Precision;
/**
* First derivative computation with large number of variables.
* <p>
* This class plays a similar role to {@link DerivativeStructure}, with
* a focus on efficiency when dealing with large number of independent variables
* and most computation depend only on a few of them, and when only first derivative
* is desired. When these conditions are met, this class should be much faster than
* {@link DerivativeStructure} and use less memory.
* </p>
*
* @since 3.3
*/
public class SparseGradient implements RealFieldElement<SparseGradient>, Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20131025L;
/** Value of the calculation. */
private double value;
/** Stored derivative, each key representing a different independent variable. */
private final Map<Integer, Double> derivatives;
/** Internal constructor.
* @param value value of the function
* @param derivatives derivatives map, a deep copy will be performed,
* so the map given here will remain safe from changes in the new instance,
* may be null to create an empty derivatives map, i.e. a constant value
*/
private SparseGradient(final double value, final Map<Integer, Double> derivatives) {
this.value = value;
this.derivatives = new HashMap<Integer, Double>();
if (derivatives != null) {
this.derivatives.putAll(derivatives);
}
}
/** Internal constructor.
* @param value value of the function
* @param scale scaling factor to apply to all derivatives
* @param derivatives derivatives map, a deep copy will be performed,
* so the map given here will remain safe from changes in the new instance,
* may be null to create an empty derivatives map, i.e. a constant value
*/
private SparseGradient(final double value, final double scale,
final Map<Integer, Double> derivatives) {
this.value = value;
this.derivatives = new HashMap<Integer, Double>();
if (derivatives != null) {
for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
this.derivatives.put(entry.getKey(), scale * entry.getValue());
}
}
}
/** Factory method creating a constant.
* @param value value of the constant
* @return a new instance
*/
public static SparseGradient createConstant(final double value) {
return new SparseGradient(value, Collections.<Integer, Double> emptyMap());
}
/** Factory method creating an independent variable.
* @param idx index of the variable
* @param value value of the variable
* @return a new instance
*/
public static SparseGradient createVariable(final int idx, final double value) {
return new SparseGradient(value, Collections.singletonMap(idx, 1.0));
}
/**
* Find the number of variables.
* @return number of variables
*/
public int numVars() {
return derivatives.size();
}
/**
* Get the derivative with respect to a particular index variable.
*
* @param index index to differentiate with.
* @return derivative with respect to a particular index variable
*/
public double getDerivative(final int index) {
final Double out = derivatives.get(index);
return (out == null) ? 0.0 : out;
}
/**
* Get the value of the function.
* @return value of the function.
*/
public double getValue() {
return value;
}
/** {@inheritDoc} */
public double getReal() {
return value;
}
/** {@inheritDoc} */
public SparseGradient add(final SparseGradient a) {
final SparseGradient out = new SparseGradient(value + a.value, derivatives);
for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
final int id = entry.getKey();
final Double old = out.derivatives.get(id);
if (old == null) {
out.derivatives.put(id, entry.getValue());
} else {
out.derivatives.put(id, old + entry.getValue());
}
}
return out;
}
/**
* Add in place.
* <p>
* This method is designed to be faster when used multiple times in a loop.
* </p>
* <p>
* The instance is changed here, in order to not change the
* instance the {@link #add(SparseGradient)} method should
* be used.
* </p>
* @param a instance to add
*/
public void addInPlace(final SparseGradient a) {
value += a.value;
for (final Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
final int id = entry.getKey();
final Double old = derivatives.get(id);
if (old == null) {
derivatives.put(id, entry.getValue());
} else {
derivatives.put(id, old + entry.getValue());
}
}
}
/** {@inheritDoc} */
public SparseGradient add(final double c) {
final SparseGradient out = new SparseGradient(value + c, derivatives);
return out;
}
/** {@inheritDoc} */
public SparseGradient subtract(final SparseGradient a) {
final SparseGradient out = new SparseGradient(value - a.value, derivatives);
for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
final int id = entry.getKey();
final Double old = out.derivatives.get(id);
if (old == null) {
out.derivatives.put(id, -entry.getValue());
} else {
out.derivatives.put(id, old - entry.getValue());
}
}
return out;
}
/** {@inheritDoc} */
public SparseGradient subtract(double c) {
return new SparseGradient(value - c, derivatives);
}
/** {@inheritDoc} */
public SparseGradient multiply(final SparseGradient a) {
final SparseGradient out =
new SparseGradient(value * a.value, Collections.<Integer, Double> emptyMap());
// Derivatives.
for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
out.derivatives.put(entry.getKey(), a.value * entry.getValue());
}
for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
final int id = entry.getKey();
final Double old = out.derivatives.get(id);
if (old == null) {
out.derivatives.put(id, value * entry.getValue());
} else {
out.derivatives.put(id, old + value * entry.getValue());
}
}
return out;
}
/**
* Multiply in place.
* <p>
* This method is designed to be faster when used multiple times in a loop.
* </p>
* <p>
* The instance is changed here, in order to not change the
* instance the {@link #add(SparseGradient)} method should
* be used.
* </p>
* @param a instance to multiply
*/
public void multiplyInPlace(final SparseGradient a) {
// Derivatives.
for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
derivatives.put(entry.getKey(), a.value * entry.getValue());
}
for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
final int id = entry.getKey();
final Double old = derivatives.get(id);
if (old == null) {
derivatives.put(id, value * entry.getValue());
} else {
derivatives.put(id, old + value * entry.getValue());
}
}
value *= a.value;
}
/** {@inheritDoc} */
public SparseGradient multiply(final double c) {
return new SparseGradient(value * c, c, derivatives);
}
/** {@inheritDoc} */
public SparseGradient multiply(final int n) {
return new SparseGradient(value * n, n, derivatives);
}
/** {@inheritDoc} */
public SparseGradient divide(final SparseGradient a) {
final SparseGradient out = new SparseGradient(value / a.value, Collections.<Integer, Double> emptyMap());
// Derivatives.
for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
out.derivatives.put(entry.getKey(), entry.getValue() / a.value);
}
for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
final int id = entry.getKey();
final Double old = out.derivatives.get(id);
if (old == null) {
out.derivatives.put(id, -out.value / a.value * entry.getValue());
} else {
out.derivatives.put(id, old - out.value / a.value * entry.getValue());
}
}
return out;
}
/** {@inheritDoc} */
public SparseGradient divide(final double c) {
return new SparseGradient(value / c, 1.0 / c, derivatives);
}
/** {@inheritDoc} */
public SparseGradient negate() {
return new SparseGradient(-value, -1.0, derivatives);
}
/** {@inheritDoc} */
public Field<SparseGradient> getField() {
return new Field<SparseGradient>() {
/** {@inheritDoc} */
public SparseGradient getZero() {
return createConstant(0);
}
/** {@inheritDoc} */
public SparseGradient getOne() {
return createConstant(1);
}
/** {@inheritDoc} */
public Class<? extends FieldElement<SparseGradient>> getRuntimeClass() {
return SparseGradient.class;
}
};
}
/** {@inheritDoc} */
public SparseGradient remainder(final double a) {
return new SparseGradient(FastMath.IEEEremainder(value, a), derivatives);
}
/** {@inheritDoc} */
public SparseGradient remainder(final SparseGradient a) {
// compute k such that lhs % rhs = lhs - k rhs
final double rem = FastMath.IEEEremainder(value, a.value);
final double k = FastMath.rint((value - rem) / a.value);
return subtract(a.multiply(k));
}
/** {@inheritDoc} */
public SparseGradient abs() {
if (Double.doubleToLongBits(value) < 0) {
// we use the bits representation to also handle -0.0
return negate();
} else {
return this;
}
}
/** {@inheritDoc} */
public SparseGradient ceil() {
return createConstant(FastMath.ceil(value));
}
/** {@inheritDoc} */
public SparseGradient floor() {
return createConstant(FastMath.floor(value));
}
/** {@inheritDoc} */
public SparseGradient rint() {
return createConstant(FastMath.rint(value));
}
/** {@inheritDoc} */
public long round() {
return FastMath.round(value);
}
/** {@inheritDoc} */
public SparseGradient signum() {
return createConstant(FastMath.signum(value));
}
/** {@inheritDoc} */
public SparseGradient copySign(final SparseGradient sign) {
final long m = Double.doubleToLongBits(value);
final long s = Double.doubleToLongBits(sign.value);
if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
return this;
}
return negate(); // flip sign
}
/** {@inheritDoc} */
public SparseGradient copySign(final double sign) {
final long m = Double.doubleToLongBits(value);
final long s = Double.doubleToLongBits(sign);
if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
return this;
}
return negate(); // flip sign
}
/** {@inheritDoc} */
public SparseGradient scalb(final int n) {
final SparseGradient out = new SparseGradient(FastMath.scalb(value, n), Collections.<Integer, Double> emptyMap());
for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
out.derivatives.put(entry.getKey(), FastMath.scalb(entry.getValue(), n));
}
return out;
}
/** {@inheritDoc} */
public SparseGradient hypot(final SparseGradient y) {
if (Double.isInfinite(value) || Double.isInfinite(y.value)) {
return createConstant(Double.POSITIVE_INFINITY);
} else if (Double.isNaN(value) || Double.isNaN(y.value)) {
return createConstant(Double.NaN);
} else {
final int expX = FastMath.getExponent(value);
final int expY = FastMath.getExponent(y.value);
if (expX > expY + 27) {
// y is negligible with respect to x
return abs();
} else if (expY > expX + 27) {
// x is negligible with respect to y
return y.abs();
} else {
// find an intermediate scale to avoid both overflow and underflow
final int middleExp = (expX + expY) / 2;
// scale parameters without losing precision
final SparseGradient scaledX = scalb(-middleExp);
final SparseGradient scaledY = y.scalb(-middleExp);
// compute scaled hypotenuse
final SparseGradient scaledH =
scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt();
// remove scaling
return scaledH.scalb(middleExp);
}
}
}
/**
* Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
* - sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
* avoiding intermediate overflow or underflow.
*
* <ul>
* <li> If either argument is infinite, then the result is positive infinity.</li>
* <li> else, if either argument is NaN then the result is NaN.</li>
* </ul>
*
* @param x a value
* @param y a value
* @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
*/
public static SparseGradient hypot(final SparseGradient x, final SparseGradient y) {
return x.hypot(y);
}
/** {@inheritDoc} */
public SparseGradient reciprocal() {
return new SparseGradient(1.0 / value, -1.0 / (value * value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient sqrt() {
final double sqrt = FastMath.sqrt(value);
return new SparseGradient(sqrt, 0.5 / sqrt, derivatives);
}
/** {@inheritDoc} */
public SparseGradient cbrt() {
final double cbrt = FastMath.cbrt(value);
return new SparseGradient(cbrt, 1.0 / (3 * cbrt * cbrt), derivatives);
}
/** {@inheritDoc} */
public SparseGradient rootN(final int n) {
if (n == 2) {
return sqrt();
} else if (n == 3) {
return cbrt();
} else {
final double root = FastMath.pow(value, 1.0 / n);
return new SparseGradient(root, 1.0 / (n * FastMath.pow(root, n - 1)), derivatives);
}
}
/** {@inheritDoc} */
public SparseGradient pow(final double p) {
return new SparseGradient(FastMath.pow(value, p), p * FastMath.pow(value, p - 1), derivatives);
}
/** {@inheritDoc} */
public SparseGradient pow(final int n) {
if (n == 0) {
return getField().getOne();
} else {
final double valueNm1 = FastMath.pow(value, n - 1);
return new SparseGradient(value * valueNm1, n * valueNm1, derivatives);
}
}
/** {@inheritDoc} */
public SparseGradient pow(final SparseGradient e) {
return log().multiply(e).exp();
}
/** Compute a<sup>x</sup> where a is a double and x a {@link SparseGradient}
* @param a number to exponentiate
* @param x power to apply
* @return a<sup>x</sup>
*/
public static SparseGradient pow(final double a, final SparseGradient x) {
if (a == 0) {
if (x.value == 0) {
return x.compose(1.0, Double.NEGATIVE_INFINITY);
} else if (x.value < 0) {
return x.compose(Double.NaN, Double.NaN);
} else {
return x.getField().getZero();
}
} else {
final double ax = FastMath.pow(a, x.value);
return new SparseGradient(ax, ax * FastMath.log(a), x.derivatives);
}
}
/** {@inheritDoc} */
public SparseGradient exp() {
final double e = FastMath.exp(value);
return new SparseGradient(e, e, derivatives);
}
/** {@inheritDoc} */
public SparseGradient expm1() {
return new SparseGradient(FastMath.expm1(value), FastMath.exp(value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient log() {
return new SparseGradient(FastMath.log(value), 1.0 / value, derivatives);
}
/** Base 10 logarithm.
* @return base 10 logarithm of the instance
*/
public SparseGradient log10() {
return new SparseGradient(FastMath.log10(value), 1.0 / (FastMath.log(10.0) * value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient log1p() {
return new SparseGradient(FastMath.log1p(value), 1.0 / (1.0 + value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient cos() {
return new SparseGradient(FastMath.cos(value), -FastMath.sin(value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient sin() {
return new SparseGradient(FastMath.sin(value), FastMath.cos(value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient tan() {
final double t = FastMath.tan(value);
return new SparseGradient(t, 1 + t * t, derivatives);
}
/** {@inheritDoc} */
public SparseGradient acos() {
return new SparseGradient(FastMath.acos(value), -1.0 / FastMath.sqrt(1 - value * value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient asin() {
return new SparseGradient(FastMath.asin(value), 1.0 / FastMath.sqrt(1 - value * value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient atan() {
return new SparseGradient(FastMath.atan(value), 1.0 / (1 + value * value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient atan2(final SparseGradient x) {
// compute r = sqrt(x^2+y^2)
final SparseGradient r = multiply(this).add(x.multiply(x)).sqrt();
final SparseGradient a;
if (x.value >= 0) {
// compute atan2(y, x) = 2 atan(y / (r + x))
a = divide(r.add(x)).atan().multiply(2);
} else {
// compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
final SparseGradient tmp = divide(r.subtract(x)).atan().multiply(-2);
a = tmp.add(tmp.value <= 0 ? -FastMath.PI : FastMath.PI);
}
// fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
a.value = FastMath.atan2(value, x.value);
return a;
}
/** Two arguments arc tangent operation.
* @param y first argument of the arc tangent
* @param x second argument of the arc tangent
* @return atan2(y, x)
*/
public static SparseGradient atan2(final SparseGradient y, final SparseGradient x) {
return y.atan2(x);
}
/** {@inheritDoc} */
public SparseGradient cosh() {
return new SparseGradient(FastMath.cosh(value), FastMath.sinh(value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient sinh() {
return new SparseGradient(FastMath.sinh(value), FastMath.cosh(value), derivatives);
}
/** {@inheritDoc} */
public SparseGradient tanh() {
final double t = FastMath.tanh(value);
return new SparseGradient(t, 1 - t * t, derivatives);
}
/** {@inheritDoc} */
public SparseGradient acosh() {
return new SparseGradient(FastMath.acosh(value), 1.0 / FastMath.sqrt(value * value - 1.0), derivatives);
}
/** {@inheritDoc} */
public SparseGradient asinh() {
return new SparseGradient(FastMath.asinh(value), 1.0 / FastMath.sqrt(value * value + 1.0), derivatives);
}
/** {@inheritDoc} */
public SparseGradient atanh() {
return new SparseGradient(FastMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
}
/** Convert radians to degrees, with error of less than 0.5 ULP
* @return instance converted into degrees
*/
public SparseGradient toDegrees() {
return new SparseGradient(FastMath.toDegrees(value), FastMath.toDegrees(1.0), derivatives);
}
/** Convert degrees to radians, with error of less than 0.5 ULP
* @return instance converted into radians
*/
public SparseGradient toRadians() {
return new SparseGradient(FastMath.toRadians(value), FastMath.toRadians(1.0), derivatives);
}
/** Evaluate Taylor expansion of a sparse gradient.
* @param delta parameters offsets (&Delta;x, &Delta;y, ...)
* @return value of the Taylor expansion at x + &Delta;x, y + &Delta;y, ...
*/
public double taylor(final double ... delta) {
double y = value;
for (int i = 0; i < delta.length; ++i) {
y += delta[i] * getDerivative(i);
}
return y;
}
/** Compute composition of the instance by a univariate function.
* @param f0 value of the function at (i.e. f({@link #getValue()}))
* @param f1 first derivative of the function at
* the current point (i.e. f'({@link #getValue()}))
* @return f(this)
*/
public SparseGradient compose(final double f0, final double f1) {
return new SparseGradient(f0, f1, derivatives);
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final SparseGradient[] a,
final SparseGradient[] b)
throws DimensionMismatchException {
// compute a simple value, with all partial derivatives
SparseGradient out = a[0].getField().getZero();
for (int i = 0; i < a.length; ++i) {
out = out.add(a[i].multiply(b[i]));
}
// recompute an accurate value, taking care of cancellations
final double[] aDouble = new double[a.length];
for (int i = 0; i < a.length; ++i) {
aDouble[i] = a[i].getValue();
}
final double[] bDouble = new double[b.length];
for (int i = 0; i < b.length; ++i) {
bDouble[i] = b[i].getValue();
}
out.value = MathArrays.linearCombination(aDouble, bDouble);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final double[] a, final SparseGradient[] b) {
// compute a simple value, with all partial derivatives
SparseGradient out = b[0].getField().getZero();
for (int i = 0; i < a.length; ++i) {
out = out.add(b[i].multiply(a[i]));
}
// recompute an accurate value, taking care of cancellations
final double[] bDouble = new double[b.length];
for (int i = 0; i < b.length; ++i) {
bDouble[i] = b[i].getValue();
}
out.value = MathArrays.linearCombination(a, bDouble);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
final SparseGradient a2, final SparseGradient b2) {
// compute a simple value, with all partial derivatives
SparseGradient out = a1.multiply(b1).add(a2.multiply(b2));
// recompute an accurate value, taking care of cancellations
out.value = MathArrays.linearCombination(a1.value, b1.value, a2.value, b2.value);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final double a1, final SparseGradient b1,
final double a2, final SparseGradient b2) {
// compute a simple value, with all partial derivatives
SparseGradient out = b1.multiply(a1).add(b2.multiply(a2));
// recompute an accurate value, taking care of cancellations
out.value = MathArrays.linearCombination(a1, b1.value, a2, b2.value);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
final SparseGradient a2, final SparseGradient b2,
final SparseGradient a3, final SparseGradient b3) {
// compute a simple value, with all partial derivatives
SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3));
// recompute an accurate value, taking care of cancellations
out.value = MathArrays.linearCombination(a1.value, b1.value,
a2.value, b2.value,
a3.value, b3.value);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final double a1, final SparseGradient b1,
final double a2, final SparseGradient b2,
final double a3, final SparseGradient b3) {
// compute a simple value, with all partial derivatives
SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3));
// recompute an accurate value, taking care of cancellations
out.value = MathArrays.linearCombination(a1, b1.value,
a2, b2.value,
a3, b3.value);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
final SparseGradient a2, final SparseGradient b2,
final SparseGradient a3, final SparseGradient b3,
final SparseGradient a4, final SparseGradient b4) {
// compute a simple value, with all partial derivatives
SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3)).add(a4.multiply(b4));
// recompute an accurate value, taking care of cancellations
out.value = MathArrays.linearCombination(a1.value, b1.value,
a2.value, b2.value,
a3.value, b3.value,
a4.value, b4.value);
return out;
}
/** {@inheritDoc} */
public SparseGradient linearCombination(final double a1, final SparseGradient b1,
final double a2, final SparseGradient b2,
final double a3, final SparseGradient b3,
final double a4, final SparseGradient b4) {
// compute a simple value, with all partial derivatives
SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3)).add(b4.multiply(a4));
// recompute an accurate value, taking care of cancellations
out.value = MathArrays.linearCombination(a1, b1.value,
a2, b2.value,
a3, b3.value,
a4, b4.value);
return out;
}
/**
* Test for the equality of two sparse gradients.
* <p>
* Sparse gradients are considered equal if they have the same value
* and the same derivatives.
* </p>
* @param other Object to test for equality to this
* @return true if two sparse gradients are equal
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof SparseGradient) {
final SparseGradient rhs = (SparseGradient)other;
if (!Precision.equals(value, rhs.value, 1)) {
return false;
}
if (derivatives.size() != rhs.derivatives.size()) {
return false;
}
for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
if (!rhs.derivatives.containsKey(entry.getKey())) {
return false;
}
if (!Precision.equals(entry.getValue(), rhs.derivatives.get(entry.getKey()), 1)) {
return false;
}
}
return true;
}
return false;
}
/**
* Get a hashCode for the derivative structure.
* @return a hash code value for this object
* @since 3.2
*/
@Override
public int hashCode() {
return 743 + 809 * MathUtils.hash(value) + 167 * derivatives.hashCode();
}
}

43
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateDifferentiableFunction.java

@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
/** Interface for univariate functions derivatives.
* <p>This interface represents a simple function which computes
* both the value and the first derivative of a mathematical function.
* The derivative is computed with respect to the input variable.</p>
* @see UnivariateDifferentiableFunction
* @see UnivariateFunctionDifferentiator
* @since 3.1
*/
public interface UnivariateDifferentiableFunction extends UnivariateFunction {
/** Simple mathematical function.
* <p>{@link UnivariateDifferentiableFunction} classes compute both the
* value and the first derivative of the function.</p>
* @param t function input value
* @return function result
* @exception DimensionMismatchException if t is inconsistent with the
* function's free parameters or order
*/
DerivativeStructure value(DerivativeStructure t)
throws DimensionMismatchException;
}

40
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateDifferentiableMatrixFunction.java

@ -0,0 +1,40 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateMatrixFunction;
/**
* Extension of {@link UnivariateMatrixFunction} representing a univariate differentiable matrix function.
*
* @since 3.1
*/
public interface UnivariateDifferentiableMatrixFunction
extends UnivariateMatrixFunction {
/**
* Compute the value for the function.
* @param x the point for which the function value should be computed
* @return the value
* @exception MathIllegalArgumentException if {@code x} does not
* satisfy the function's constraints (argument out of bound, or unsupported
* derivative order for example)
*/
DerivativeStructure[][] value(DerivativeStructure x) throws MathIllegalArgumentException;
}

40
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateDifferentiableVectorFunction.java

@ -0,0 +1,40 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateVectorFunction;
/**
* Extension of {@link UnivariateVectorFunction} representing a univariate differentiable vectorial function.
*
* @since 3.1
*/
public interface UnivariateDifferentiableVectorFunction
extends UnivariateVectorFunction {
/**
* Compute the value for the function.
* @param x the point for which the function value should be computed
* @return the value
* @exception MathIllegalArgumentException if {@code x} does not
* satisfy the function's constraints (argument out of bound, or unsupported
* derivative order for example)
*/
DerivativeStructure[] value(DerivativeStructure x) throws MathIllegalArgumentException;
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateFunctionDifferentiator.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
/** Interface defining the function differentiation operation.
* @since 3.1
*/
public interface UnivariateFunctionDifferentiator {
/** Create an implementation of a {@link UnivariateDifferentiableFunction
* differential} from a regular {@link UnivariateFunction function}.
* @param function function to differentiate
* @return differential function
*/
UnivariateDifferentiableFunction differentiate(UnivariateFunction function);
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateMatrixFunctionDifferentiator.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateMatrixFunction;
/** Interface defining the function differentiation operation.
* @since 3.1
*/
public interface UnivariateMatrixFunctionDifferentiator {
/** Create an implementation of a {@link UnivariateDifferentiableMatrixFunction
* differential} from a regular {@link UnivariateMatrixFunction matrix function}.
* @param function function to differentiate
* @return differential function
*/
UnivariateDifferentiableMatrixFunction differentiate(UnivariateMatrixFunction function);
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/UnivariateVectorFunctionDifferentiator.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateVectorFunction;
/** Interface defining the function differentiation operation.
* @since 3.1
*/
public interface UnivariateVectorFunctionDifferentiator {
/** Create an implementation of a {@link UnivariateDifferentiableVectorFunction
* differential} from a regular {@link UnivariateVectorFunction vector function}.
* @param function function to differentiate
* @return differential function
*/
UnivariateDifferentiableVectorFunction differentiate(UnivariateVectorFunction function);
}

42
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/differentiation/package-info.java

@ -0,0 +1,42 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* <p>
* This package holds the main interfaces and basic building block classes
* dealing with differentiation.
* The core class is {@link com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure
* DerivativeStructure} which holds the value and the differentials of a function. This class
* handles some arbitrary number of free parameters and arbitrary differentiation order. It is used
* both as the input and the output type for the {@link
* com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction
* UnivariateDifferentiableFunction} interface. Any differentiable function should implement this
* interface.
* </p>
* <p>
* The {@link com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateFunctionDifferentiator
* UnivariateFunctionDifferentiator} interface defines a way to differentiate a simple {@link
* com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction UnivariateFunction} and get a {@link
* com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction
* UnivariateDifferentiableFunction}.
* </p>
* <p>
* Similar interfaces also exist for multivariate functions and for vector or matrix valued functions.
* </p>
*
*/
package com.fr.third.org.apache.commons.math3.analysis.differentiation;

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Abs.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Absolute value function.
*
* @since 3.0
*/
public class Abs implements UnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.abs(x);
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Acos.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Arc-cosine function.
*
* @since 3.0
*/
public class Acos implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.acos(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.acos();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Acosh.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Hyperbolic arc-cosine function.
*
* @since 3.0
*/
public class Acosh implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.acosh(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.acosh();
}
}

32
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Add.java

@ -0,0 +1,32 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
/**
* Add the two operands.
*
* @since 3.0
*/
public class Add implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return x + y;
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Asin.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Arc-sine function.
*
* @since 3.0
*/
public class Asin implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.asin(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.asin();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Asinh.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Hyperbolic arc-sine function.
*
* @since 3.0
*/
public class Asinh implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.asinh(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.asinh();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Atan.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Arc-tangent function.
*
* @since 3.0
*/
public class Atan implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.atan(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.atan();
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Atan2.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Arc-tangent function.
*
* @since 3.0
*/
public class Atan2 implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return FastMath.atan2(x, y);
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Atanh.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Hyperbolic arc-tangent function.
*
* @since 3.0
*/
public class Atanh implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.atanh(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.atanh();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Cbrt.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Cube root function.
*
* @since 3.0
*/
public class Cbrt implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.cbrt(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.cbrt();
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Ceil.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* {@code ceil} function.
*
* @since 3.0
*/
public class Ceil implements UnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.ceil(x);
}
}

60
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Constant.java

@ -0,0 +1,60 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
/**
* Constant function.
*
* @since 3.0
*/
public class Constant implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Constant. */
private final double c;
/**
* @param c Constant.
*/
public Constant(double c) {
this.c = c;
}
/** {@inheritDoc} */
public double value(double x) {
return c;
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public DifferentiableUnivariateFunction derivative() {
return new Constant(0);
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return new DerivativeStructure(t.getFreeParameters(), t.getOrder(), c);
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Cos.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Cosine function.
*
* @since 3.0
*/
public class Cos implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.cos(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.cos();
}
}

51
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Cosh.java

@ -0,0 +1,51 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Hyperbolic cosine function.
*
* @since 3.0
*/
public class Cosh implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.cosh(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public DifferentiableUnivariateFunction derivative() {
return new Sinh();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.cosh();
}
}

32
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Divide.java

@ -0,0 +1,32 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
/**
* Divide the first operand by the second.
*
* @since 3.0
*/
public class Divide implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return x / y;
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Exp.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Exponential function.
*
* @since 3.0
*/
public class Exp implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.exp(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.exp();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Expm1.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <code>e<sup>x</sup>-1</code> function.
*
* @since 3.0
*/
public class Expm1 implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.expm1(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.expm1();
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Floor.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* {@code floor} function.
*
* @since 3.0
*/
public class Floor implements UnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.floor(x);
}
}

259
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Gaussian.java

@ -0,0 +1,259 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import java.util.Arrays;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
import com.fr.third.org.apache.commons.math3.util.Precision;
/**
* <a href="http://en.wikipedia.org/wiki/Gaussian_function">
* Gaussian</a> function.
*
* @since 3.0
*/
public class Gaussian implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Mean. */
private final double mean;
/** Inverse of the standard deviation. */
private final double is;
/** Inverse of twice the square of the standard deviation. */
private final double i2s2;
/** Normalization factor. */
private final double norm;
/**
* Gaussian with given normalization factor, mean and standard deviation.
*
* @param norm Normalization factor.
* @param mean Mean.
* @param sigma Standard deviation.
* @throws NotStrictlyPositiveException if {@code sigma <= 0}.
*/
public Gaussian(double norm,
double mean,
double sigma)
throws NotStrictlyPositiveException {
if (sigma <= 0) {
throw new NotStrictlyPositiveException(sigma);
}
this.norm = norm;
this.mean = mean;
this.is = 1 / sigma;
this.i2s2 = 0.5 * is * is;
}
/**
* Normalized gaussian with given mean and standard deviation.
*
* @param mean Mean.
* @param sigma Standard deviation.
* @throws NotStrictlyPositiveException if {@code sigma <= 0}.
*/
public Gaussian(double mean,
double sigma)
throws NotStrictlyPositiveException {
this(1 / (sigma * FastMath.sqrt(2 * Math.PI)), mean, sigma);
}
/**
* Normalized gaussian with zero mean and unit standard deviation.
*/
public Gaussian() {
this(0, 1);
}
/** {@inheritDoc} */
public double value(double x) {
return value(x - mean, norm, i2s2);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/**
* Parametric function where the input array contains the parameters of
* the Gaussian, ordered as follows:
* <ul>
* <li>Norm</li>
* <li>Mean</li>
* <li>Standard deviation</li>
* </ul>
*/
public static class Parametric implements ParametricUnivariateFunction {
/**
* Computes the value of the Gaussian at {@code x}.
*
* @param x Value for which the function must be computed.
* @param param Values of norm, mean and standard deviation.
* @return the value of the function.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 3.
* @throws NotStrictlyPositiveException if {@code param[2]} is negative.
*/
public double value(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException,
NotStrictlyPositiveException {
validateParameters(param);
final double diff = x - param[1];
final double i2s2 = 1 / (2 * param[2] * param[2]);
return Gaussian.value(diff, param[0], i2s2);
}
/**
* Computes the value of the gradient at {@code x}.
* The components of the gradient vector are the partial
* derivatives of the function with respect to each of the
* <em>parameters</em> (norm, mean and standard deviation).
*
* @param x Value at which the gradient must be computed.
* @param param Values of norm, mean and standard deviation.
* @return the gradient vector at {@code x}.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 3.
* @throws NotStrictlyPositiveException if {@code param[2]} is negative.
*/
public double[] gradient(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException,
NotStrictlyPositiveException {
validateParameters(param);
final double norm = param[0];
final double diff = x - param[1];
final double sigma = param[2];
final double i2s2 = 1 / (2 * sigma * sigma);
final double n = Gaussian.value(diff, 1, i2s2);
final double m = norm * n * 2 * i2s2 * diff;
final double s = m * diff / sigma;
return new double[] { n, m, s };
}
/**
* Validates parameters to ensure they are appropriate for the evaluation of
* the {@link #value(double,double[])} and {@link #gradient(double,double[])}
* methods.
*
* @param param Values of norm, mean and standard deviation.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 3.
* @throws NotStrictlyPositiveException if {@code param[2]} is negative.
*/
private void validateParameters(double[] param)
throws NullArgumentException,
DimensionMismatchException,
NotStrictlyPositiveException {
if (param == null) {
throw new NullArgumentException();
}
if (param.length != 3) {
throw new DimensionMismatchException(param.length, 3);
}
if (param[2] <= 0) {
throw new NotStrictlyPositiveException(param[2]);
}
}
}
/**
* @param xMinusMean {@code x - mean}.
* @param norm Normalization factor.
* @param i2s2 Inverse of twice the square of the standard deviation.
* @return the value of the Gaussian at {@code x}.
*/
private static double value(double xMinusMean,
double norm,
double i2s2) {
return norm * FastMath.exp(-xMinusMean * xMinusMean * i2s2);
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t)
throws DimensionMismatchException {
final double u = is * (t.getValue() - mean);
double[] f = new double[t.getOrder() + 1];
// the nth order derivative of the Gaussian has the form:
// dn(g(x)/dxn = (norm / s^n) P_n(u) exp(-u^2/2) with u=(x-m)/s
// where P_n(u) is a degree n polynomial with same parity as n
// P_0(u) = 1, P_1(u) = -u, P_2(u) = u^2 - 1, P_3(u) = -u^3 + 3 u...
// the general recurrence relation for P_n is:
// P_n(u) = P_(n-1)'(u) - u P_(n-1)(u)
// as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
final double[] p = new double[f.length];
p[0] = 1;
final double u2 = u * u;
double coeff = norm * FastMath.exp(-0.5 * u2);
if (coeff <= Precision.SAFE_MIN) {
Arrays.fill(f, 0.0);
} else {
f[0] = coeff;
for (int n = 1; n < f.length; ++n) {
// update and evaluate polynomial P_n(x)
double v = 0;
p[n] = -p[n - 1];
for (int k = n; k >= 0; k -= 2) {
v = v * u2 + p[k];
if (k > 2) {
p[k - 2] = (k - 1) * p[k - 1] - p[k - 3];
} else if (k == 2) {
p[0] = p[1];
}
}
if ((n & 0x1) == 1) {
v *= u;
}
coeff *= is;
f[n] = coeff * v;
}
}
return t.compose(f);
}
}

183
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/HarmonicOscillator.java

@ -0,0 +1,183 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Harmonic_oscillator">
* simple harmonic oscillator</a> function.
*
* @since 3.0
*/
public class HarmonicOscillator implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Amplitude. */
private final double amplitude;
/** Angular frequency. */
private final double omega;
/** Phase. */
private final double phase;
/**
* Harmonic oscillator function.
*
* @param amplitude Amplitude.
* @param omega Angular frequency.
* @param phase Phase.
*/
public HarmonicOscillator(double amplitude,
double omega,
double phase) {
this.amplitude = amplitude;
this.omega = omega;
this.phase = phase;
}
/** {@inheritDoc} */
public double value(double x) {
return value(omega * x + phase, amplitude);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/**
* Parametric function where the input array contains the parameters of
* the harmonic oscillator function, ordered as follows:
* <ul>
* <li>Amplitude</li>
* <li>Angular frequency</li>
* <li>Phase</li>
* </ul>
*/
public static class Parametric implements ParametricUnivariateFunction {
/**
* Computes the value of the harmonic oscillator at {@code x}.
*
* @param x Value for which the function must be computed.
* @param param Values of norm, mean and standard deviation.
* @return the value of the function.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 3.
*/
public double value(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException {
validateParameters(param);
return HarmonicOscillator.value(x * param[1] + param[2], param[0]);
}
/**
* Computes the value of the gradient at {@code x}.
* The components of the gradient vector are the partial
* derivatives of the function with respect to each of the
* <em>parameters</em> (amplitude, angular frequency and phase).
*
* @param x Value at which the gradient must be computed.
* @param param Values of amplitude, angular frequency and phase.
* @return the gradient vector at {@code x}.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 3.
*/
public double[] gradient(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException {
validateParameters(param);
final double amplitude = param[0];
final double omega = param[1];
final double phase = param[2];
final double xTimesOmegaPlusPhase = omega * x + phase;
final double a = HarmonicOscillator.value(xTimesOmegaPlusPhase, 1);
final double p = -amplitude * FastMath.sin(xTimesOmegaPlusPhase);
final double w = p * x;
return new double[] { a, w, p };
}
/**
* Validates parameters to ensure they are appropriate for the evaluation of
* the {@link #value(double,double[])} and {@link #gradient(double,double[])}
* methods.
*
* @param param Values of norm, mean and standard deviation.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 3.
*/
private void validateParameters(double[] param)
throws NullArgumentException,
DimensionMismatchException {
if (param == null) {
throw new NullArgumentException();
}
if (param.length != 3) {
throw new DimensionMismatchException(param.length, 3);
}
}
}
/**
* @param xTimesOmegaPlusPhase {@code omega * x + phase}.
* @param amplitude Amplitude.
* @return the value of the harmonic oscillator function at {@code x}.
*/
private static double value(double xTimesOmegaPlusPhase,
double amplitude) {
return amplitude * FastMath.cos(xTimesOmegaPlusPhase);
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t)
throws DimensionMismatchException {
final double x = t.getValue();
double[] f = new double[t.getOrder() + 1];
final double alpha = omega * x + phase;
f[0] = amplitude * FastMath.cos(alpha);
if (f.length > 1) {
f[1] = -amplitude * omega * FastMath.sin(alpha);
final double mo2 = - omega * omega;
for (int i = 2; i < f.length; ++i) {
f[i] = mo2 * f[i - 2];
}
}
return t.compose(f);
}
}

50
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Identity.java

@ -0,0 +1,50 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
/**
* Identity function.
*
* @since 3.0
*/
public class Identity implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return x;
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public DifferentiableUnivariateFunction derivative() {
return new Constant(1);
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t;
}
}

52
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Inverse.java

@ -0,0 +1,52 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
/**
* Inverse function.
*
* @since 3.0
*/
public class Inverse implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return 1 / x;
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.reciprocal();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Log.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Natural logarithm function.
*
* @since 3.0
*/
public class Log implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.log(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.log();
}
}

54
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Log10.java

@ -0,0 +1,54 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Base 10 logarithm function.
*
* @since 3.0
*/
public class Log10 implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.log10(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.log10();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Log1p.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <code>log(1 + p)</code> function.
*
* @since 3.0
*/
public class Log1p implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.log1p(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.log1p();
}
}

228
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Logistic.java

@ -0,0 +1,228 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Generalised_logistic_function">
* Generalised logistic</a> function.
*
* @since 3.0
*/
public class Logistic implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Lower asymptote. */
private final double a;
/** Upper asymptote. */
private final double k;
/** Growth rate. */
private final double b;
/** Parameter that affects near which asymptote maximum growth occurs. */
private final double oneOverN;
/** Parameter that affects the position of the curve along the ordinate axis. */
private final double q;
/** Abscissa of maximum growth. */
private final double m;
/**
* @param k If {@code b > 0}, value of the function for x going towards +&infin;.
* If {@code b < 0}, value of the function for x going towards -&infin;.
* @param m Abscissa of maximum growth.
* @param b Growth rate.
* @param q Parameter that affects the position of the curve along the
* ordinate axis.
* @param a If {@code b > 0}, value of the function for x going towards -&infin;.
* If {@code b < 0}, value of the function for x going towards +&infin;.
* @param n Parameter that affects near which asymptote the maximum
* growth occurs.
* @throws NotStrictlyPositiveException if {@code n <= 0}.
*/
public Logistic(double k,
double m,
double b,
double q,
double a,
double n)
throws NotStrictlyPositiveException {
if (n <= 0) {
throw new NotStrictlyPositiveException(n);
}
this.k = k;
this.m = m;
this.b = b;
this.q = q;
this.a = a;
oneOverN = 1 / n;
}
/** {@inheritDoc} */
public double value(double x) {
return value(m - x, k, b, q, a, oneOverN);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/**
* Parametric function where the input array contains the parameters of
* the {@link Logistic#Logistic(double,double,double,double,double,double)
* logistic function}, ordered as follows:
* <ul>
* <li>k</li>
* <li>m</li>
* <li>b</li>
* <li>q</li>
* <li>a</li>
* <li>n</li>
* </ul>
*/
public static class Parametric implements ParametricUnivariateFunction {
/**
* Computes the value of the sigmoid at {@code x}.
*
* @param x Value for which the function must be computed.
* @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
* {@code a} and {@code n}.
* @return the value of the function.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 6.
* @throws NotStrictlyPositiveException if {@code param[5] <= 0}.
*/
public double value(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException,
NotStrictlyPositiveException {
validateParameters(param);
return Logistic.value(param[1] - x, param[0],
param[2], param[3],
param[4], 1 / param[5]);
}
/**
* Computes the value of the gradient at {@code x}.
* The components of the gradient vector are the partial
* derivatives of the function with respect to each of the
* <em>parameters</em>.
*
* @param x Value at which the gradient must be computed.
* @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
* {@code a} and {@code n}.
* @return the gradient vector at {@code x}.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 6.
* @throws NotStrictlyPositiveException if {@code param[5] <= 0}.
*/
public double[] gradient(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException,
NotStrictlyPositiveException {
validateParameters(param);
final double b = param[2];
final double q = param[3];
final double mMinusX = param[1] - x;
final double oneOverN = 1 / param[5];
final double exp = FastMath.exp(b * mMinusX);
final double qExp = q * exp;
final double qExp1 = qExp + 1;
final double factor1 = (param[0] - param[4]) * oneOverN / FastMath.pow(qExp1, oneOverN);
final double factor2 = -factor1 / qExp1;
// Components of the gradient.
final double gk = Logistic.value(mMinusX, 1, b, q, 0, oneOverN);
final double gm = factor2 * b * qExp;
final double gb = factor2 * mMinusX * qExp;
final double gq = factor2 * exp;
final double ga = Logistic.value(mMinusX, 0, b, q, 1, oneOverN);
final double gn = factor1 * FastMath.log(qExp1) * oneOverN;
return new double[] { gk, gm, gb, gq, ga, gn };
}
/**
* Validates parameters to ensure they are appropriate for the evaluation of
* the {@link #value(double,double[])} and {@link #gradient(double,double[])}
* methods.
*
* @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
* {@code a} and {@code n}.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 6.
* @throws NotStrictlyPositiveException if {@code param[5] <= 0}.
*/
private void validateParameters(double[] param)
throws NullArgumentException,
DimensionMismatchException,
NotStrictlyPositiveException {
if (param == null) {
throw new NullArgumentException();
}
if (param.length != 6) {
throw new DimensionMismatchException(param.length, 6);
}
if (param[5] <= 0) {
throw new NotStrictlyPositiveException(param[5]);
}
}
}
/**
* @param mMinusX {@code m - x}.
* @param k {@code k}.
* @param b {@code b}.
* @param q {@code q}.
* @param a {@code a}.
* @param oneOverN {@code 1 / n}.
* @return the value of the function.
*/
private static double value(double mMinusX,
double k,
double b,
double q,
double a,
double oneOverN) {
return a + (k - a) / FastMath.pow(1 + q * FastMath.exp(b * mMinusX), oneOverN);
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.negate().add(m).multiply(b).exp().multiply(q).add(1).pow(oneOverN).reciprocal().multiply(k - a).add(a);
}
}

212
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Logit.java

@ -0,0 +1,212 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.exception.OutOfRangeException;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Logit">
* Logit</a> function.
* It is the inverse of the {@link Sigmoid sigmoid} function.
*
* @since 3.0
*/
public class Logit implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Lower bound. */
private final double lo;
/** Higher bound. */
private final double hi;
/**
* Usual logit function, where the lower bound is 0 and the higher
* bound is 1.
*/
public Logit() {
this(0, 1);
}
/**
* Logit function.
*
* @param lo Lower bound of the function domain.
* @param hi Higher bound of the function domain.
*/
public Logit(double lo,
double hi) {
this.lo = lo;
this.hi = hi;
}
/** {@inheritDoc} */
public double value(double x)
throws OutOfRangeException {
return value(x, lo, hi);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/**
* Parametric function where the input array contains the parameters of
* the logit function, ordered as follows:
* <ul>
* <li>Lower bound</li>
* <li>Higher bound</li>
* </ul>
*/
public static class Parametric implements ParametricUnivariateFunction {
/**
* Computes the value of the logit at {@code x}.
*
* @param x Value for which the function must be computed.
* @param param Values of lower bound and higher bounds.
* @return the value of the function.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 2.
*/
public double value(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException {
validateParameters(param);
return Logit.value(x, param[0], param[1]);
}
/**
* Computes the value of the gradient at {@code x}.
* The components of the gradient vector are the partial
* derivatives of the function with respect to each of the
* <em>parameters</em> (lower bound and higher bound).
*
* @param x Value at which the gradient must be computed.
* @param param Values for lower and higher bounds.
* @return the gradient vector at {@code x}.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 2.
*/
public double[] gradient(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException {
validateParameters(param);
final double lo = param[0];
final double hi = param[1];
return new double[] { 1 / (lo - x), 1 / (hi - x) };
}
/**
* Validates parameters to ensure they are appropriate for the evaluation of
* the {@link #value(double,double[])} and {@link #gradient(double,double[])}
* methods.
*
* @param param Values for lower and higher bounds.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 2.
*/
private void validateParameters(double[] param)
throws NullArgumentException,
DimensionMismatchException {
if (param == null) {
throw new NullArgumentException();
}
if (param.length != 2) {
throw new DimensionMismatchException(param.length, 2);
}
}
}
/**
* @param x Value at which to compute the logit.
* @param lo Lower bound.
* @param hi Higher bound.
* @return the value of the logit function at {@code x}.
* @throws OutOfRangeException if {@code x < lo} or {@code x > hi}.
*/
private static double value(double x,
double lo,
double hi)
throws OutOfRangeException {
if (x < lo || x > hi) {
throw new OutOfRangeException(x, lo, hi);
}
return FastMath.log((x - lo) / (hi - x));
}
/** {@inheritDoc}
* @since 3.1
* @exception OutOfRangeException if parameter is outside of function domain
*/
public DerivativeStructure value(final DerivativeStructure t)
throws OutOfRangeException {
final double x = t.getValue();
if (x < lo || x > hi) {
throw new OutOfRangeException(x, lo, hi);
}
double[] f = new double[t.getOrder() + 1];
// function value
f[0] = FastMath.log((x - lo) / (hi - x));
if (Double.isInfinite(f[0])) {
if (f.length > 1) {
f[1] = Double.POSITIVE_INFINITY;
}
// fill the array with infinities
// (for x close to lo the signs will flip between -inf and +inf,
// for x close to hi the signs will always be +inf)
// this is probably overkill, since the call to compose at the end
// of the method will transform most infinities into NaN ...
for (int i = 2; i < f.length; ++i) {
f[i] = f[i - 2];
}
} else {
// function derivatives
final double invL = 1.0 / (x - lo);
double xL = invL;
final double invH = 1.0 / (hi - x);
double xH = invH;
for (int i = 1; i < f.length; ++i) {
f[i] = xL + xH;
xL *= -i * invL;
xH *= i * invH;
}
}
return t.compose(f);
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Max.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Maximum function.
*
* @since 3.0
*/
public class Max implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return FastMath.max(x, y);
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Min.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Minimum function.
*
* @since 3.0
*/
public class Min implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return FastMath.min(x, y);
}
}

50
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Minus.java

@ -0,0 +1,50 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
/**
* Minus function.
*
* @since 3.0
*/
public class Minus implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return -x;
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public DifferentiableUnivariateFunction derivative() {
return new Constant(-1);
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.negate();
}
}

32
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Multiply.java

@ -0,0 +1,32 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
/**
* Multiply the two operands.
*
* @since 3.0
*/
public class Multiply implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return x * y;
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Pow.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Power function.
*
* @since 3.0
*/
public class Pow implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return FastMath.pow(x, y);
}
}

63
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Power.java

@ -0,0 +1,63 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Power function.
*
* @since 3.0
*/
public class Power implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Power. */
private final double p;
/**
* @param p Power.
*/
public Power(double p) {
this.p = p;
}
/** {@inheritDoc} */
public double value(double x) {
return FastMath.pow(x, p);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.pow(p);
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Rint.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* {@code rint} function.
*
* @since 3.0
*/
public class Rint implements UnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.rint(x);
}
}

218
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sigmoid.java

@ -0,0 +1,218 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import java.util.Arrays;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Sigmoid_function">
* Sigmoid</a> function.
* It is the inverse of the {@link Logit logit} function.
* A more flexible version, the generalised logistic, is implemented
* by the {@link Logistic} class.
*
* @since 3.0
*/
public class Sigmoid implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** Lower asymptote. */
private final double lo;
/** Higher asymptote. */
private final double hi;
/**
* Usual sigmoid function, where the lower asymptote is 0 and the higher
* asymptote is 1.
*/
public Sigmoid() {
this(0, 1);
}
/**
* Sigmoid function.
*
* @param lo Lower asymptote.
* @param hi Higher asymptote.
*/
public Sigmoid(double lo,
double hi) {
this.lo = lo;
this.hi = hi;
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc} */
public double value(double x) {
return value(x, lo, hi);
}
/**
* Parametric function where the input array contains the parameters of
* the {@link Sigmoid#Sigmoid(double,double) sigmoid function}, ordered
* as follows:
* <ul>
* <li>Lower asymptote</li>
* <li>Higher asymptote</li>
* </ul>
*/
public static class Parametric implements ParametricUnivariateFunction {
/**
* Computes the value of the sigmoid at {@code x}.
*
* @param x Value for which the function must be computed.
* @param param Values of lower asymptote and higher asymptote.
* @return the value of the function.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 2.
*/
public double value(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException {
validateParameters(param);
return Sigmoid.value(x, param[0], param[1]);
}
/**
* Computes the value of the gradient at {@code x}.
* The components of the gradient vector are the partial
* derivatives of the function with respect to each of the
* <em>parameters</em> (lower asymptote and higher asymptote).
*
* @param x Value at which the gradient must be computed.
* @param param Values for lower asymptote and higher asymptote.
* @return the gradient vector at {@code x}.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 2.
*/
public double[] gradient(double x, double ... param)
throws NullArgumentException,
DimensionMismatchException {
validateParameters(param);
final double invExp1 = 1 / (1 + FastMath.exp(-x));
return new double[] { 1 - invExp1, invExp1 };
}
/**
* Validates parameters to ensure they are appropriate for the evaluation of
* the {@link #value(double,double[])} and {@link #gradient(double,double[])}
* methods.
*
* @param param Values for lower and higher asymptotes.
* @throws NullArgumentException if {@code param} is {@code null}.
* @throws DimensionMismatchException if the size of {@code param} is
* not 2.
*/
private void validateParameters(double[] param)
throws NullArgumentException,
DimensionMismatchException {
if (param == null) {
throw new NullArgumentException();
}
if (param.length != 2) {
throw new DimensionMismatchException(param.length, 2);
}
}
}
/**
* @param x Value at which to compute the sigmoid.
* @param lo Lower asymptote.
* @param hi Higher asymptote.
* @return the value of the sigmoid function at {@code x}.
*/
private static double value(double x,
double lo,
double hi) {
return lo + (hi - lo) / (1 + FastMath.exp(-x));
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t)
throws DimensionMismatchException {
double[] f = new double[t.getOrder() + 1];
final double exp = FastMath.exp(-t.getValue());
if (Double.isInfinite(exp)) {
// special handling near lower boundary, to avoid NaN
f[0] = lo;
Arrays.fill(f, 1, f.length, 0.0);
} else {
// the nth order derivative of sigmoid has the form:
// dn(sigmoid(x)/dxn = P_n(exp(-x)) / (1+exp(-x))^(n+1)
// where P_n(t) is a degree n polynomial with normalized higher term
// P_0(t) = 1, P_1(t) = t, P_2(t) = t^2 - t, P_3(t) = t^3 - 4 t^2 + t...
// the general recurrence relation for P_n is:
// P_n(x) = n t P_(n-1)(t) - t (1 + t) P_(n-1)'(t)
final double[] p = new double[f.length];
final double inv = 1 / (1 + exp);
double coeff = hi - lo;
for (int n = 0; n < f.length; ++n) {
// update and evaluate polynomial P_n(t)
double v = 0;
p[n] = 1;
for (int k = n; k >= 0; --k) {
v = v * exp + p[k];
if (k > 1) {
p[k - 1] = (n - k + 2) * p[k - 2] - (k - 1) * p[k - 1];
} else {
p[0] = 0;
}
}
coeff *= inv;
f[n] = coeff * v;
}
// fix function value
f[0] += lo;
}
return t.compose(f);
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Signum.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* {@code signum} function.
*
* @since 3.0
*/
public class Signum implements UnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.signum(x);
}
}

51
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sin.java

@ -0,0 +1,51 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Sine function.
*
* @since 3.0
*/
public class Sin implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.sin(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public DifferentiableUnivariateFunction derivative() {
return new Cos();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.sin();
}
}

205
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sinc.java

@ -0,0 +1,205 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* <a href="http://en.wikipedia.org/wiki/Sinc_function">Sinc</a> function,
* defined by
* <pre><code>
* sinc(x) = 1 if x = 0,
* sin(x) / x otherwise.
* </code></pre>
*
* @since 3.0
*/
public class Sinc implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/**
* Value below which the computations are done using Taylor series.
* <p>
* The Taylor series for sinc even order derivatives are:
* <pre>
* d^(2n)sinc/dx^(2n) = Sum_(k>=0) (-1)^(n+k) / ((2k)!(2n+2k+1)) x^(2k)
* = (-1)^n [ 1/(2n+1) - x^2/(4n+6) + x^4/(48n+120) - x^6/(1440n+5040) + O(x^8) ]
* </pre>
* </p>
* <p>
* The Taylor series for sinc odd order derivatives are:
* <pre>
* d^(2n+1)sinc/dx^(2n+1) = Sum_(k>=0) (-1)^(n+k+1) / ((2k+1)!(2n+2k+3)) x^(2k+1)
* = (-1)^(n+1) [ x/(2n+3) - x^3/(12n+30) + x^5/(240n+840) - x^7/(10080n+45360) + O(x^9) ]
* </pre>
* </p>
* <p>
* So the ratio of the fourth term with respect to the first term
* is always smaller than x^6/720, for all derivative orders.
* This implies that neglecting this term and using only the first three terms induces
* a relative error bounded by x^6/720. The SHORTCUT value is chosen such that this
* relative error is below double precision accuracy when |x| <= SHORTCUT.
* </p>
*/
private static final double SHORTCUT = 6.0e-3;
/** For normalized sinc function. */
private final boolean normalized;
/**
* The sinc function, {@code sin(x) / x}.
*/
public Sinc() {
this(false);
}
/**
* Instantiates the sinc function.
*
* @param normalized If {@code true}, the function is
* <code> sin(&pi;x) / &pi;x</code>, otherwise {@code sin(x) / x}.
*/
public Sinc(boolean normalized) {
this.normalized = normalized;
}
/** {@inheritDoc} */
public double value(final double x) {
final double scaledX = normalized ? FastMath.PI * x : x;
if (FastMath.abs(scaledX) <= SHORTCUT) {
// use Taylor series
final double scaledX2 = scaledX * scaledX;
return ((scaledX2 - 20) * scaledX2 + 120) / 120;
} else {
// use definition expression
return FastMath.sin(scaledX) / scaledX;
}
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t)
throws DimensionMismatchException {
final double scaledX = (normalized ? FastMath.PI : 1) * t.getValue();
final double scaledX2 = scaledX * scaledX;
double[] f = new double[t.getOrder() + 1];
if (FastMath.abs(scaledX) <= SHORTCUT) {
for (int i = 0; i < f.length; ++i) {
final int k = i / 2;
if ((i & 0x1) == 0) {
// even derivation order
f[i] = (((k & 0x1) == 0) ? 1 : -1) *
(1.0 / (i + 1) - scaledX2 * (1.0 / (2 * i + 6) - scaledX2 / (24 * i + 120)));
} else {
// odd derivation order
f[i] = (((k & 0x1) == 0) ? -scaledX : scaledX) *
(1.0 / (i + 2) - scaledX2 * (1.0 / (6 * i + 24) - scaledX2 / (120 * i + 720)));
}
}
} else {
final double inv = 1 / scaledX;
final double cos = FastMath.cos(scaledX);
final double sin = FastMath.sin(scaledX);
f[0] = inv * sin;
// the nth order derivative of sinc has the form:
// dn(sinc(x)/dxn = [S_n(x) sin(x) + C_n(x) cos(x)] / x^(n+1)
// where S_n(x) is an even polynomial with degree n-1 or n (depending on parity)
// and C_n(x) is an odd polynomial with degree n-1 or n (depending on parity)
// S_0(x) = 1, S_1(x) = -1, S_2(x) = -x^2 + 2, S_3(x) = 3x^2 - 6...
// C_0(x) = 0, C_1(x) = x, C_2(x) = -2x, C_3(x) = -x^3 + 6x...
// the general recurrence relations for S_n and C_n are:
// S_n(x) = x S_(n-1)'(x) - n S_(n-1)(x) - x C_(n-1)(x)
// C_n(x) = x C_(n-1)'(x) - n C_(n-1)(x) + x S_(n-1)(x)
// as per polynomials parity, we can store both S_n and C_n in the same array
final double[] sc = new double[f.length];
sc[0] = 1;
double coeff = inv;
for (int n = 1; n < f.length; ++n) {
double s = 0;
double c = 0;
// update and evaluate polynomials S_n(x) and C_n(x)
final int kStart;
if ((n & 0x1) == 0) {
// even derivation order, S_n is degree n and C_n is degree n-1
sc[n] = 0;
kStart = n;
} else {
// odd derivation order, S_n is degree n-1 and C_n is degree n
sc[n] = sc[n - 1];
c = sc[n];
kStart = n - 1;
}
// in this loop, k is always even
for (int k = kStart; k > 1; k -= 2) {
// sine part
sc[k] = (k - n) * sc[k] - sc[k - 1];
s = s * scaledX2 + sc[k];
// cosine part
sc[k - 1] = (k - 1 - n) * sc[k - 1] + sc[k -2];
c = c * scaledX2 + sc[k - 1];
}
sc[0] *= -n;
s = s * scaledX2 + sc[0];
coeff *= inv;
f[n] = coeff * (s * sin + c * scaledX * cos);
}
}
if (normalized) {
double scale = FastMath.PI;
for (int i = 1; i < f.length; ++i) {
f[i] *= scale;
scale *= FastMath.PI;
}
}
return t.compose(f);
}
}

51
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sinh.java

@ -0,0 +1,51 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Hyperbolic sine function.
*
* @since 3.0
*/
public class Sinh implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.sinh(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public DifferentiableUnivariateFunction derivative() {
return new Cosh();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.sinh();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Sqrt.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Square-root function.
*
* @since 3.0
*/
public class Sqrt implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.sqrt(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.sqrt();
}
}

101
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/StepFunction.java

@ -0,0 +1,101 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import java.util.Arrays;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NoDataException;
import com.fr.third.org.apache.commons.math3.exception.NonMonotonicSequenceException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.MathArrays;
/**
* <a href="http://en.wikipedia.org/wiki/Step_function">
* Step function</a>.
*
* @since 3.0
*/
public class StepFunction implements UnivariateFunction {
/** Abscissae. */
private final double[] abscissa;
/** Ordinates. */
private final double[] ordinate;
/**
* Builds a step function from a list of arguments and the corresponding
* values. Specifically, returns the function h(x) defined by <pre><code>
* h(x) = y[0] for all x &lt; x[1]
* y[1] for x[1] &le; x &lt; x[2]
* ...
* y[y.length - 1] for x &ge; x[x.length - 1]
* </code></pre>
* The value of {@code x[0]} is ignored, but it must be strictly less than
* {@code x[1]}.
*
* @param x Domain values where the function changes value.
* @param y Values of the function.
* @throws NonMonotonicSequenceException
* if the {@code x} array is not sorted in strictly increasing order.
* @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
* @throws NoDataException if {@code x} or {@code y} are zero-length.
* @throws DimensionMismatchException if {@code x} and {@code y} do not
* have the same length.
*/
public StepFunction(double[] x,
double[] y)
throws NullArgumentException, NoDataException,
DimensionMismatchException, NonMonotonicSequenceException {
if (x == null ||
y == null) {
throw new NullArgumentException();
}
if (x.length == 0 ||
y.length == 0) {
throw new NoDataException();
}
if (y.length != x.length) {
throw new DimensionMismatchException(y.length, x.length);
}
MathArrays.checkOrder(x);
abscissa = MathArrays.copyOf(x);
ordinate = MathArrays.copyOf(y);
}
/** {@inheritDoc} */
public double value(double x) {
int index = Arrays.binarySearch(abscissa, x);
double fx = 0;
if (index < -1) {
// "x" is between "abscissa[-index-2]" and "abscissa[-index-1]".
fx = ordinate[-index-2];
} else if (index >= 0) {
// "x" is exactly "abscissa[index]".
fx = ordinate[index];
} else {
// Otherwise, "x" is smaller than the first value in "abscissa"
// (hence the returned value should be "ordinate[0]").
fx = ordinate[0];
}
return fx;
}
}

32
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Subtract.java

@ -0,0 +1,32 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.BivariateFunction;
/**
* Subtract the second operand from the first.
*
* @since 3.0
*/
public class Subtract implements BivariateFunction {
/** {@inheritDoc} */
public double value(double x, double y) {
return x - y;
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Tan.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Tangent function.
*
* @since 3.0
*/
public class Tan implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.tan(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.tan();
}
}

53
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Tanh.java

@ -0,0 +1,53 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import com.fr.third.org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import com.fr.third.org.apache.commons.math3.analysis.FunctionUtils;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Hyperbolic tangent function.
*
* @since 3.0
*/
public class Tanh implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.tanh(x);
}
/** {@inheritDoc}
* @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
*/
@Deprecated
public UnivariateFunction derivative() {
return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
}
/** {@inheritDoc}
* @since 3.1
*/
public DerivativeStructure value(final DerivativeStructure t) {
return t.tanh();
}
}

33
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/Ulp.java

@ -0,0 +1,33 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.function;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* {@code ulp} function.
*
* @since 3.0
*/
public class Ulp implements UnivariateFunction {
/** {@inheritDoc} */
public double value(double x) {
return FastMath.ulp(x);
}
}

26
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/function/package-info.java

@ -0,0 +1,26 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* <p>
* The {@code function} package contains function objects that wrap the
* methods contained in {@link java.lang.Math}, as well as common
* mathematical functions such as the gaussian and sinc functions.
* </p>
*
*/
package com.fr.third.org.apache.commons.math3.analysis.function;

299
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/BaseAbstractUnivariateIntegrator.java

@ -0,0 +1,299 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.solvers.UnivariateSolverUtils;
import com.fr.third.org.apache.commons.math3.util.Incrementor;
import com.fr.third.org.apache.commons.math3.util.IntegerSequence;
import com.fr.third.org.apache.commons.math3.util.Precision;
import com.fr.third.org.apache.commons.math3.util.MathUtils;
/**
* Provide a default implementation for several generic functions.
*
* @since 1.2
*/
public abstract class BaseAbstractUnivariateIntegrator implements UnivariateIntegrator {
/** Default absolute accuracy. */
public static final double DEFAULT_ABSOLUTE_ACCURACY = 1.0e-15;
/** Default relative accuracy. */
public static final double DEFAULT_RELATIVE_ACCURACY = 1.0e-6;
/** Default minimal iteration count. */
public static final int DEFAULT_MIN_ITERATIONS_COUNT = 3;
/** Default maximal iteration count. */
public static final int DEFAULT_MAX_ITERATIONS_COUNT = Integer.MAX_VALUE;
/** The iteration count.
* @deprecated as of 3.6, this field has been replaced with {@link #incrementCount()}
*/
@Deprecated
protected Incrementor iterations;
/** The iteration count. */
private IntegerSequence.Incrementor count;
/** Maximum absolute error. */
private final double absoluteAccuracy;
/** Maximum relative error. */
private final double relativeAccuracy;
/** minimum number of iterations */
private final int minimalIterationCount;
/** The functions evaluation count. */
private IntegerSequence.Incrementor evaluations;
/** Function to integrate. */
private UnivariateFunction function;
/** Lower bound for the interval. */
private double min;
/** Upper bound for the interval. */
private double max;
/**
* Construct an integrator with given accuracies and iteration counts.
* <p>
* The meanings of the various parameters are:
* <ul>
* <li>relative accuracy:
* this is used to stop iterations if the absolute accuracy can't be
* achieved due to large values or short mantissa length. If this
* should be the primary criterion for convergence rather then a
* safety measure, set the absolute accuracy to a ridiculously small value,
* like {@link Precision#SAFE_MIN Precision.SAFE_MIN}.</li>
* <li>absolute accuracy:
* The default is usually chosen so that results in the interval
* -10..-0.1 and +0.1..+10 can be found with a reasonable accuracy. If the
* expected absolute value of your results is of much smaller magnitude, set
* this to a smaller value.</li>
* <li>minimum number of iterations:
* minimal iteration is needed to avoid false early convergence, e.g.
* the sample points happen to be zeroes of the function. Users can
* use the default value or choose one that they see as appropriate.</li>
* <li>maximum number of iterations:
* usually a high iteration count indicates convergence problems. However,
* the "reasonable value" varies widely for different algorithms. Users are
* advised to use the default value supplied by the algorithm.</li>
* </ul>
*
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
*/
protected BaseAbstractUnivariateIntegrator(final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException {
// accuracy settings
this.relativeAccuracy = relativeAccuracy;
this.absoluteAccuracy = absoluteAccuracy;
// iterations count settings
if (minimalIterationCount <= 0) {
throw new NotStrictlyPositiveException(minimalIterationCount);
}
if (maximalIterationCount <= minimalIterationCount) {
throw new NumberIsTooSmallException(maximalIterationCount, minimalIterationCount, false);
}
this.minimalIterationCount = minimalIterationCount;
this.count = IntegerSequence.Incrementor.create().withMaximalCount(maximalIterationCount);
@SuppressWarnings("deprecation")
Incrementor wrapped =
Incrementor.wrap(count);
this.iterations = wrapped;
// prepare evaluations counter, but do not set it yet
evaluations = IntegerSequence.Incrementor.create();
}
/**
* Construct an integrator with given accuracies.
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
*/
protected BaseAbstractUnivariateIntegrator(final double relativeAccuracy,
final double absoluteAccuracy) {
this(relativeAccuracy, absoluteAccuracy,
DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
}
/**
* Construct an integrator with given iteration counts.
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
*/
protected BaseAbstractUnivariateIntegrator(final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException {
this(DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY,
minimalIterationCount, maximalIterationCount);
}
/** {@inheritDoc} */
public double getRelativeAccuracy() {
return relativeAccuracy;
}
/** {@inheritDoc} */
public double getAbsoluteAccuracy() {
return absoluteAccuracy;
}
/** {@inheritDoc} */
public int getMinimalIterationCount() {
return minimalIterationCount;
}
/** {@inheritDoc} */
public int getMaximalIterationCount() {
return count.getMaximalCount();
}
/** {@inheritDoc} */
public int getEvaluations() {
return evaluations.getCount();
}
/** {@inheritDoc} */
public int getIterations() {
return count.getCount();
}
/** Increment the number of iterations.
* @exception MaxCountExceededException if the number of iterations
* exceeds the allowed maximum number
*/
protected void incrementCount() throws MaxCountExceededException {
count.increment();
}
/**
* @return the lower bound.
*/
protected double getMin() {
return min;
}
/**
* @return the upper bound.
*/
protected double getMax() {
return max;
}
/**
* Compute the objective function value.
*
* @param point Point at which the objective function must be evaluated.
* @return the objective function value at specified point.
* @throws TooManyEvaluationsException if the maximal number of function
* evaluations is exceeded.
*/
protected double computeObjectiveValue(final double point)
throws TooManyEvaluationsException {
try {
evaluations.increment();
} catch (MaxCountExceededException e) {
throw new TooManyEvaluationsException(e.getMax());
}
return function.value(point);
}
/**
* Prepare for computation.
* Subclasses must call this method if they override any of the
* {@code solve} methods.
*
* @param maxEval Maximum number of evaluations.
* @param f the integrand function
* @param lower the min bound for the interval
* @param upper the upper bound for the interval
* @throws NullArgumentException if {@code f} is {@code null}.
* @throws MathIllegalArgumentException if {@code min >= max}.
*/
protected void setup(final int maxEval,
final UnivariateFunction f,
final double lower, final double upper)
throws NullArgumentException, MathIllegalArgumentException {
// Checks.
MathUtils.checkNotNull(f);
UnivariateSolverUtils.verifyInterval(lower, upper);
// Reset.
min = lower;
max = upper;
function = f;
evaluations = evaluations.withMaximalCount(maxEval).withStart(0);
count = count.withStart(0);
}
/** {@inheritDoc} */
public double integrate(final int maxEval, final UnivariateFunction f,
final double lower, final double upper)
throws TooManyEvaluationsException, MaxCountExceededException,
MathIllegalArgumentException, NullArgumentException {
// Initialization.
setup(maxEval, f, lower, upper);
// Perform computation.
return doIntegrate();
}
/**
* Method for implementing actual integration algorithms in derived
* classes.
*
* @return the root.
* @throws TooManyEvaluationsException if the maximal number of evaluations
* is exceeded.
* @throws MaxCountExceededException if the maximum iteration count is exceeded
* or the integrator detects convergence problems otherwise
*/
protected abstract double doIntegrate()
throws TooManyEvaluationsException, MaxCountExceededException;
}

183
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/IterativeLegendreGaussIntegrator.java

@ -0,0 +1,183 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.exception.util.LocalizedFormats;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.analysis.integration.gauss.GaussIntegratorFactory;
import com.fr.third.org.apache.commons.math3.analysis.integration.gauss.GaussIntegrator;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* This algorithm divides the integration interval into equally-sized
* sub-interval and on each of them performs a
* <a href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html">
* Legendre-Gauss</a> quadrature.
* Because of its <em>non-adaptive</em> nature, this algorithm can
* converge to a wrong value for the integral (for example, if the
* function is significantly different from zero toward the ends of the
* integration interval).
* In particular, a change of variables aimed at estimating integrals
* over infinite intervals as proposed
* <a href="http://en.wikipedia.org/w/index.php?title=Numerical_integration#Integrals_over_infinite_intervals">
* here</a> should be avoided when using this class.
*
* @since 3.1
*/
public class IterativeLegendreGaussIntegrator
extends BaseAbstractUnivariateIntegrator {
/** Factory that computes the points and weights. */
private static final GaussIntegratorFactory FACTORY
= new GaussIntegratorFactory();
/** Number of integration points (per interval). */
private final int numberOfPoints;
/**
* Builds an integrator with given accuracies and iterations counts.
*
* @param n Number of integration points.
* @param relativeAccuracy Relative accuracy of the result.
* @param absoluteAccuracy Absolute accuracy of the result.
* @param minimalIterationCount Minimum number of iterations.
* @param maximalIterationCount Maximum number of iterations.
* @throws NotStrictlyPositiveException if minimal number of iterations
* or number of points are not strictly positive.
* @throws NumberIsTooSmallException if maximal number of iterations
* is smaller than or equal to the minimal number of iterations.
*/
public IterativeLegendreGaussIntegrator(final int n,
final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
if (n <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_POINTS, n);
}
numberOfPoints = n;
}
/**
* Builds an integrator with given accuracies.
*
* @param n Number of integration points.
* @param relativeAccuracy Relative accuracy of the result.
* @param absoluteAccuracy Absolute accuracy of the result.
* @throws NotStrictlyPositiveException if {@code n < 1}.
*/
public IterativeLegendreGaussIntegrator(final int n,
final double relativeAccuracy,
final double absoluteAccuracy)
throws NotStrictlyPositiveException {
this(n, relativeAccuracy, absoluteAccuracy,
DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
}
/**
* Builds an integrator with given iteration counts.
*
* @param n Number of integration points.
* @param minimalIterationCount Minimum number of iterations.
* @param maximalIterationCount Maximum number of iterations.
* @throws NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive.
* @throws NumberIsTooSmallException if maximal number of iterations
* is smaller than or equal to the minimal number of iterations.
* @throws NotStrictlyPositiveException if {@code n < 1}.
*/
public IterativeLegendreGaussIntegrator(final int n,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException {
this(n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY,
minimalIterationCount, maximalIterationCount);
}
/** {@inheritDoc} */
@Override
protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
// Compute first estimate with a single step.
double oldt = stage(1);
int n = 2;
while (true) {
// Improve integral with a larger number of steps.
final double t = stage(n);
// Estimate the error.
final double delta = FastMath.abs(t - oldt);
final double limit =
FastMath.max(getAbsoluteAccuracy(),
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5);
// check convergence
if (getIterations() + 1 >= getMinimalIterationCount() &&
delta <= limit) {
return t;
}
// Prepare next iteration.
final double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / numberOfPoints));
n = FastMath.max((int) (ratio * n), n + 1);
oldt = t;
incrementCount();
}
}
/**
* Compute the n-th stage integral.
*
* @param n Number of steps.
* @return the value of n-th stage integral.
* @throws TooManyEvaluationsException if the maximum number of evaluations
* is exceeded.
*/
private double stage(final int n)
throws TooManyEvaluationsException {
// Function to be integrated is stored in the base class.
final UnivariateFunction f = new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x)
throws MathIllegalArgumentException, TooManyEvaluationsException {
return computeObjectiveValue(x);
}
};
final double min = getMin();
final double max = getMax();
final double step = (max - min) / n;
double sum = 0;
for (int i = 0; i < n; i++) {
// Integrate over each sub-interval [a, b].
final double a = min + i * step;
final double b = a + step;
final GaussIntegrator g = FACTORY.legendreHighPrecision(numberOfPoints, a, b);
sum += g.integrate(f);
}
return sum;
}
}

265
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/LegendreGaussIntegrator.java

@ -0,0 +1,265 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.exception.util.LocalizedFormats;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html">
* Legendre-Gauss</a> quadrature formula.
* <p>
* Legendre-Gauss integrators are efficient integrators that can
* accurately integrate functions with few function evaluations. A
* Legendre-Gauss integrator using an n-points quadrature formula can
* integrate 2n-1 degree polynomials exactly.
* </p>
* <p>
* These integrators evaluate the function on n carefully chosen
* abscissas in each step interval (mapped to the canonical [-1,1] interval).
* The evaluation abscissas are not evenly spaced and none of them are
* at the interval endpoints. This implies the function integrated can be
* undefined at integration interval endpoints.
* </p>
* <p>
* The evaluation abscissas x<sub>i</sub> are the roots of the degree n
* Legendre polynomial. The weights a<sub>i</sub> of the quadrature formula
* integrals from -1 to +1 &int; Li<sup>2</sup> where Li (x) =
* &prod; (x-x<sub>k</sub>)/(x<sub>i</sub>-x<sub>k</sub>) for k != i.
* </p>
* <p>
* @since 1.2
* @deprecated As of 3.1 (to be removed in 4.0). Please use
* {@link IterativeLegendreGaussIntegrator} instead.
*/
@Deprecated
public class LegendreGaussIntegrator extends BaseAbstractUnivariateIntegrator {
/** Abscissas for the 2 points method. */
private static final double[] ABSCISSAS_2 = {
-1.0 / FastMath.sqrt(3.0),
1.0 / FastMath.sqrt(3.0)
};
/** Weights for the 2 points method. */
private static final double[] WEIGHTS_2 = {
1.0,
1.0
};
/** Abscissas for the 3 points method. */
private static final double[] ABSCISSAS_3 = {
-FastMath.sqrt(0.6),
0.0,
FastMath.sqrt(0.6)
};
/** Weights for the 3 points method. */
private static final double[] WEIGHTS_3 = {
5.0 / 9.0,
8.0 / 9.0,
5.0 / 9.0
};
/** Abscissas for the 4 points method. */
private static final double[] ABSCISSAS_4 = {
-FastMath.sqrt((15.0 + 2.0 * FastMath.sqrt(30.0)) / 35.0),
-FastMath.sqrt((15.0 - 2.0 * FastMath.sqrt(30.0)) / 35.0),
FastMath.sqrt((15.0 - 2.0 * FastMath.sqrt(30.0)) / 35.0),
FastMath.sqrt((15.0 + 2.0 * FastMath.sqrt(30.0)) / 35.0)
};
/** Weights for the 4 points method. */
private static final double[] WEIGHTS_4 = {
(90.0 - 5.0 * FastMath.sqrt(30.0)) / 180.0,
(90.0 + 5.0 * FastMath.sqrt(30.0)) / 180.0,
(90.0 + 5.0 * FastMath.sqrt(30.0)) / 180.0,
(90.0 - 5.0 * FastMath.sqrt(30.0)) / 180.0
};
/** Abscissas for the 5 points method. */
private static final double[] ABSCISSAS_5 = {
-FastMath.sqrt((35.0 + 2.0 * FastMath.sqrt(70.0)) / 63.0),
-FastMath.sqrt((35.0 - 2.0 * FastMath.sqrt(70.0)) / 63.0),
0.0,
FastMath.sqrt((35.0 - 2.0 * FastMath.sqrt(70.0)) / 63.0),
FastMath.sqrt((35.0 + 2.0 * FastMath.sqrt(70.0)) / 63.0)
};
/** Weights for the 5 points method. */
private static final double[] WEIGHTS_5 = {
(322.0 - 13.0 * FastMath.sqrt(70.0)) / 900.0,
(322.0 + 13.0 * FastMath.sqrt(70.0)) / 900.0,
128.0 / 225.0,
(322.0 + 13.0 * FastMath.sqrt(70.0)) / 900.0,
(322.0 - 13.0 * FastMath.sqrt(70.0)) / 900.0
};
/** Abscissas for the current method. */
private final double[] abscissas;
/** Weights for the current method. */
private final double[] weights;
/**
* Build a Legendre-Gauss integrator with given accuracies and iterations counts.
* @param n number of points desired (must be between 2 and 5 inclusive)
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* @exception MathIllegalArgumentException if number of points is out of [2; 5]
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
*/
public LegendreGaussIntegrator(final int n,
final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws MathIllegalArgumentException, NotStrictlyPositiveException, NumberIsTooSmallException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
switch(n) {
case 2 :
abscissas = ABSCISSAS_2;
weights = WEIGHTS_2;
break;
case 3 :
abscissas = ABSCISSAS_3;
weights = WEIGHTS_3;
break;
case 4 :
abscissas = ABSCISSAS_4;
weights = WEIGHTS_4;
break;
case 5 :
abscissas = ABSCISSAS_5;
weights = WEIGHTS_5;
break;
default :
throw new MathIllegalArgumentException(
LocalizedFormats.N_POINTS_GAUSS_LEGENDRE_INTEGRATOR_NOT_SUPPORTED,
n, 2, 5);
}
}
/**
* Build a Legendre-Gauss integrator with given accuracies.
* @param n number of points desired (must be between 2 and 5 inclusive)
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @exception MathIllegalArgumentException if number of points is out of [2; 5]
*/
public LegendreGaussIntegrator(final int n,
final double relativeAccuracy,
final double absoluteAccuracy)
throws MathIllegalArgumentException {
this(n, relativeAccuracy, absoluteAccuracy,
DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
}
/**
* Build a Legendre-Gauss integrator with given iteration counts.
* @param n number of points desired (must be between 2 and 5 inclusive)
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* @exception MathIllegalArgumentException if number of points is out of [2; 5]
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
*/
public LegendreGaussIntegrator(final int n,
final int minimalIterationCount,
final int maximalIterationCount)
throws MathIllegalArgumentException {
this(n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY,
minimalIterationCount, maximalIterationCount);
}
/** {@inheritDoc} */
@Override
protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
// compute first estimate with a single step
double oldt = stage(1);
int n = 2;
while (true) {
// improve integral with a larger number of steps
final double t = stage(n);
// estimate error
final double delta = FastMath.abs(t - oldt);
final double limit =
FastMath.max(getAbsoluteAccuracy(),
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5);
// check convergence
if ((getIterations() + 1 >= getMinimalIterationCount()) && (delta <= limit)) {
return t;
}
// prepare next iteration
double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / abscissas.length));
n = FastMath.max((int) (ratio * n), n + 1);
oldt = t;
incrementCount();
}
}
/**
* Compute the n-th stage integral.
* @param n number of steps
* @return the value of n-th stage integral
* @throws TooManyEvaluationsException if the maximum number of evaluations
* is exceeded.
*/
private double stage(final int n)
throws TooManyEvaluationsException {
// set up the step for the current stage
final double step = (getMax() - getMin()) / n;
final double halfStep = step / 2.0;
// integrate over all elementary steps
double midPoint = getMin() + halfStep;
double sum = 0.0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < abscissas.length; ++j) {
sum += weights[j] * computeObjectiveValue(midPoint + halfStep * abscissas[j]);
}
midPoint += step;
}
return halfStep * sum;
}
}

169
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/MidPointIntegrator.java

@ -0,0 +1,169 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooLargeException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Implements the <a href="http://en.wikipedia.org/wiki/Midpoint_method">
* Midpoint Rule</a> for integration of real univariate functions. For
* reference, see <b>Numerical Mathematics</b>, ISBN 0387989595,
* chapter 9.2.
* <p>
* The function should be integrable.</p>
*
* @since 3.3
*/
public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator {
/** Maximum number of iterations for midpoint. */
public static final int MIDPOINT_MAX_ITERATIONS_COUNT = 64;
/**
* Build a midpoint integrator with given accuracies and iterations counts.
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
*/
public MidPointIntegrator(final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
MIDPOINT_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Build a midpoint integrator with given iteration counts.
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT}
*/
public MidPointIntegrator(final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
MIDPOINT_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Construct a midpoint integrator with default settings.
* (max iteration count set to {@link #MIDPOINT_MAX_ITERATIONS_COUNT})
*/
public MidPointIntegrator() {
super(DEFAULT_MIN_ITERATIONS_COUNT, MIDPOINT_MAX_ITERATIONS_COUNT);
}
/**
* Compute the n-th stage integral of midpoint rule.
* This function should only be called by API <code>integrate()</code> in the package.
* To save time it does not verify arguments - caller does.
* <p>
* The interval is divided equally into 2^n sections rather than an
* arbitrary m sections because this configuration can best utilize the
* already computed values.</p>
*
* @param n the stage of 1/2 refinement. Must be larger than 0.
* @param previousStageResult Result from the previous call to the
* {@code stage} method.
* @param min Lower bound of the integration interval.
* @param diffMaxMin Difference between the lower bound and upper bound
* of the integration interval.
* @return the value of n-th stage integral
* @throws TooManyEvaluationsException if the maximal number of evaluations
* is exceeded.
*/
private double stage(final int n,
double previousStageResult,
double min,
double diffMaxMin)
throws TooManyEvaluationsException {
// number of new points in this stage
final long np = 1L << (n - 1);
double sum = 0;
// spacing between adjacent new points
final double spacing = diffMaxMin / np;
// the first new point
double x = min + 0.5 * spacing;
for (long i = 0; i < np; i++) {
sum += computeObjectiveValue(x);
x += spacing;
}
// add the new sum to previously calculated result
return 0.5 * (previousStageResult + sum * spacing);
}
/** {@inheritDoc} */
@Override
protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
final double min = getMin();
final double diff = getMax() - min;
final double midPoint = min + 0.5 * diff;
double oldt = diff * computeObjectiveValue(midPoint);
while (true) {
incrementCount();
final int i = getIterations();
final double t = stage(i, oldt, min, diff);
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(t - oldt);
final double rLimit =
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return t;
}
}
oldt = t;
}
}
}

142
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/RombergIntegrator.java

@ -0,0 +1,142 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooLargeException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/RombergIntegration.html">
* Romberg Algorithm</a> for integration of real univariate functions. For
* reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
* chapter 3.
* <p>
* Romberg integration employs k successive refinements of the trapezoid
* rule to remove error terms less than order O(N^(-2k)). Simpson's rule
* is a special case of k = 2.</p>
*
* @since 1.2
*/
public class RombergIntegrator extends BaseAbstractUnivariateIntegrator {
/** Maximal number of iterations for Romberg. */
public static final int ROMBERG_MAX_ITERATIONS_COUNT = 32;
/**
* Build a Romberg integrator with given accuracies and iterations counts.
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #ROMBERG_MAX_ITERATIONS_COUNT})
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #ROMBERG_MAX_ITERATIONS_COUNT}
*/
public RombergIntegrator(final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > ROMBERG_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
ROMBERG_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Build a Romberg integrator with given iteration counts.
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #ROMBERG_MAX_ITERATIONS_COUNT})
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #ROMBERG_MAX_ITERATIONS_COUNT}
*/
public RombergIntegrator(final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > ROMBERG_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
ROMBERG_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Construct a Romberg integrator with default settings
* (max iteration count set to {@link #ROMBERG_MAX_ITERATIONS_COUNT})
*/
public RombergIntegrator() {
super(DEFAULT_MIN_ITERATIONS_COUNT, ROMBERG_MAX_ITERATIONS_COUNT);
}
/** {@inheritDoc} */
@Override
protected double doIntegrate()
throws TooManyEvaluationsException, MaxCountExceededException {
final int m = getMaximalIterationCount() + 1;
double previousRow[] = new double[m];
double currentRow[] = new double[m];
TrapezoidIntegrator qtrap = new TrapezoidIntegrator();
currentRow[0] = qtrap.stage(this, 0);
incrementCount();
double olds = currentRow[0];
while (true) {
final int i = getIterations();
// switch rows
final double[] tmpRow = previousRow;
previousRow = currentRow;
currentRow = tmpRow;
currentRow[0] = qtrap.stage(this, i);
incrementCount();
for (int j = 1; j <= i; j++) {
// Richardson extrapolation coefficient
final double r = (1L << (2 * j)) - 1;
final double tIJm1 = currentRow[j - 1];
currentRow[j] = tIJm1 + (tIJm1 - previousRow[j - 1]) / r;
}
final double s = currentRow[i];
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(s - olds);
final double rLimit = getRelativeAccuracy() * (FastMath.abs(olds) + FastMath.abs(s)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return s;
}
}
olds = s;
}
}
}

129
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/SimpsonIntegrator.java

@ -0,0 +1,129 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooLargeException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Implements <a href="http://mathworld.wolfram.com/SimpsonsRule.html">
* Simpson's Rule</a> for integration of real univariate functions. For
* reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
* chapter 3.
* <p>
* This implementation employs the basic trapezoid rule to calculate Simpson's
* rule.</p>
*
* @since 1.2
*/
public class SimpsonIntegrator extends BaseAbstractUnivariateIntegrator {
/** Maximal number of iterations for Simpson. */
public static final int SIMPSON_MAX_ITERATIONS_COUNT = 64;
/**
* Build a Simpson integrator with given accuracies and iterations counts.
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #SIMPSON_MAX_ITERATIONS_COUNT})
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #SIMPSON_MAX_ITERATIONS_COUNT}
*/
public SimpsonIntegrator(final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > SIMPSON_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
SIMPSON_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Build a Simpson integrator with given iteration counts.
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #SIMPSON_MAX_ITERATIONS_COUNT})
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #SIMPSON_MAX_ITERATIONS_COUNT}
*/
public SimpsonIntegrator(final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > SIMPSON_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
SIMPSON_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Construct an integrator with default settings.
* (max iteration count set to {@link #SIMPSON_MAX_ITERATIONS_COUNT})
*/
public SimpsonIntegrator() {
super(DEFAULT_MIN_ITERATIONS_COUNT, SIMPSON_MAX_ITERATIONS_COUNT);
}
/** {@inheritDoc} */
@Override
protected double doIntegrate()
throws TooManyEvaluationsException, MaxCountExceededException {
TrapezoidIntegrator qtrap = new TrapezoidIntegrator();
if (getMinimalIterationCount() == 1) {
return (4 * qtrap.stage(this, 1) - qtrap.stage(this, 0)) / 3.0;
}
// Simpson's rule requires at least two trapezoid stages.
double olds = 0;
double oldt = qtrap.stage(this, 0);
while (true) {
final double t = qtrap.stage(this, getIterations());
incrementCount();
final double s = (4 * t - oldt) / 3.0;
if (getIterations() >= getMinimalIterationCount()) {
final double delta = FastMath.abs(s - olds);
final double rLimit =
getRelativeAccuracy() * (FastMath.abs(olds) + FastMath.abs(s)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return s;
}
}
olds = s;
oldt = t;
}
}
}

168
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/TrapezoidIntegrator.java

@ -0,0 +1,168 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooLargeException;
import com.fr.third.org.apache.commons.math3.exception.NumberIsTooSmallException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Implements the <a href="http://mathworld.wolfram.com/TrapezoidalRule.html">
* Trapezoid Rule</a> for integration of real univariate functions. For
* reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
* chapter 3.
* <p>
* The function should be integrable.</p>
*
* @since 1.2
*/
public class TrapezoidIntegrator extends BaseAbstractUnivariateIntegrator {
/** Maximum number of iterations for trapezoid. */
public static final int TRAPEZOID_MAX_ITERATIONS_COUNT = 64;
/** Intermediate result. */
private double s;
/**
* Build a trapezoid integrator with given accuracies and iterations counts.
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #TRAPEZOID_MAX_ITERATIONS_COUNT}
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #TRAPEZOID_MAX_ITERATIONS_COUNT}
*/
public TrapezoidIntegrator(final double relativeAccuracy,
final double absoluteAccuracy,
final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > TRAPEZOID_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
TRAPEZOID_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Build a trapezoid integrator with given iteration counts.
* @param minimalIterationCount minimum number of iterations
* @param maximalIterationCount maximum number of iterations
* (must be less than or equal to {@link #TRAPEZOID_MAX_ITERATIONS_COUNT}
* @exception NotStrictlyPositiveException if minimal number of iterations
* is not strictly positive
* @exception NumberIsTooSmallException if maximal number of iterations
* is lesser than or equal to the minimal number of iterations
* @exception NumberIsTooLargeException if maximal number of iterations
* is greater than {@link #TRAPEZOID_MAX_ITERATIONS_COUNT}
*/
public TrapezoidIntegrator(final int minimalIterationCount,
final int maximalIterationCount)
throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException {
super(minimalIterationCount, maximalIterationCount);
if (maximalIterationCount > TRAPEZOID_MAX_ITERATIONS_COUNT) {
throw new NumberIsTooLargeException(maximalIterationCount,
TRAPEZOID_MAX_ITERATIONS_COUNT, false);
}
}
/**
* Construct a trapezoid integrator with default settings.
* (max iteration count set to {@link #TRAPEZOID_MAX_ITERATIONS_COUNT})
*/
public TrapezoidIntegrator() {
super(DEFAULT_MIN_ITERATIONS_COUNT, TRAPEZOID_MAX_ITERATIONS_COUNT);
}
/**
* Compute the n-th stage integral of trapezoid rule. This function
* should only be called by API <code>integrate()</code> in the package.
* To save time it does not verify arguments - caller does.
* <p>
* The interval is divided equally into 2^n sections rather than an
* arbitrary m sections because this configuration can best utilize the
* already computed values.</p>
*
* @param baseIntegrator integrator holding integration parameters
* @param n the stage of 1/2 refinement, n = 0 is no refinement
* @return the value of n-th stage integral
* @throws TooManyEvaluationsException if the maximal number of evaluations
* is exceeded.
*/
double stage(final BaseAbstractUnivariateIntegrator baseIntegrator, final int n)
throws TooManyEvaluationsException {
if (n == 0) {
final double max = baseIntegrator.getMax();
final double min = baseIntegrator.getMin();
s = 0.5 * (max - min) *
(baseIntegrator.computeObjectiveValue(min) +
baseIntegrator.computeObjectiveValue(max));
return s;
} else {
final long np = 1L << (n-1); // number of new points in this stage
double sum = 0;
final double max = baseIntegrator.getMax();
final double min = baseIntegrator.getMin();
// spacing between adjacent new points
final double spacing = (max - min) / np;
double x = min + 0.5 * spacing; // the first new point
for (long i = 0; i < np; i++) {
sum += baseIntegrator.computeObjectiveValue(x);
x += spacing;
}
// add the new sum to previously calculated result
s = 0.5 * (s + sum * spacing);
return s;
}
}
/** {@inheritDoc} */
@Override
protected double doIntegrate()
throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException {
double oldt = stage(this, 0);
incrementCount();
while (true) {
final int i = getIterations();
final double t = stage(this, i);
if (i >= getMinimalIterationCount()) {
final double delta = FastMath.abs(t - oldt);
final double rLimit =
getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5;
if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) {
return t;
}
}
oldt = t;
incrementCount();
}
}
}

95
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/UnivariateIntegrator.java

@ -0,0 +1,95 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;
import com.fr.third.org.apache.commons.math3.exception.MathIllegalArgumentException;
import com.fr.third.org.apache.commons.math3.exception.MaxCountExceededException;
import com.fr.third.org.apache.commons.math3.exception.NullArgumentException;
import com.fr.third.org.apache.commons.math3.exception.TooManyEvaluationsException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
/**
* Interface for univariate real integration algorithms.
*
* @since 1.2
*/
public interface UnivariateIntegrator {
/**
* Get the relative accuracy.
*
* @return the accuracy
*/
double getRelativeAccuracy();
/**
* Get the absolute accuracy.
*
* @return the accuracy
*/
double getAbsoluteAccuracy();
/**
* Get the min limit for the number of iterations.
*
* @return the actual min limit
*/
int getMinimalIterationCount();
/**
* Get the upper limit for the number of iterations.
*
* @return the actual upper limit
*/
int getMaximalIterationCount();
/**
* Integrate the function in the given interval.
*
* @param maxEval Maximum number of evaluations.
* @param f the integrand function
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @return the value of integral
* @throws TooManyEvaluationsException if the maximum number of function
* evaluations is exceeded
* @throws MaxCountExceededException if the maximum iteration count is exceeded
* or the integrator detects convergence problems otherwise
* @throws MathIllegalArgumentException if {@code min > max} or the endpoints do not
* satisfy the requirements specified by the integrator
* @throws NullArgumentException if {@code f} is {@code null}.
*/
double integrate(int maxEval, UnivariateFunction f, double min,
double max)
throws TooManyEvaluationsException, MaxCountExceededException,
MathIllegalArgumentException, NullArgumentException;
/**
* Get the number of function evaluations of the last run of the integrator.
*
* @return number of function evaluations
*/
int getEvaluations();
/**
* Get the number of iterations of the last run of the integrator.
*
* @return number of iterations
*/
int getIterations();
}

154
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/BaseRuleFactory.java

@ -0,0 +1,154 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import java.util.Map;
import java.util.TreeMap;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.exception.util.LocalizedFormats;
import com.fr.third.org.apache.commons.math3.util.Pair;
/**
* Base class for rules that determines the integration nodes and their
* weights.
* Subclasses must implement the {@link #computeRule(int) computeRule} method.
*
* @param <T> Type of the number used to represent the points and weights of
* the quadrature rules.
*
* @since 3.1
*/
public abstract class BaseRuleFactory<T extends Number> {
/** List of points and weights, indexed by the order of the rule. */
private final Map<Integer, Pair<T[], T[]>> pointsAndWeights
= new TreeMap<Integer, Pair<T[], T[]>>();
/** Cache for double-precision rules. */
private final Map<Integer, Pair<double[], double[]>> pointsAndWeightsDouble
= new TreeMap<Integer, Pair<double[], double[]>>();
/**
* Gets a copy of the quadrature rule with the given number of integration
* points.
*
* @param numberOfPoints Number of integration points.
* @return a copy of the integration rule.
* @throws NotStrictlyPositiveException if {@code numberOfPoints < 1}.
* @throws DimensionMismatchException if the elements of the rule pair do not
* have the same length.
*/
public Pair<double[], double[]> getRule(int numberOfPoints)
throws NotStrictlyPositiveException, DimensionMismatchException {
if (numberOfPoints <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_POINTS,
numberOfPoints);
}
// Try to obtain the rule from the cache.
Pair<double[], double[]> cached = pointsAndWeightsDouble.get(numberOfPoints);
if (cached == null) {
// Rule not computed yet.
// Compute the rule.
final Pair<T[], T[]> rule = getRuleInternal(numberOfPoints);
cached = convertToDouble(rule);
// Cache it.
pointsAndWeightsDouble.put(numberOfPoints, cached);
}
// Return a copy.
return new Pair<double[], double[]>(cached.getFirst().clone(),
cached.getSecond().clone());
}
/**
* Gets a rule.
* Synchronization ensures that rules will be computed and added to the
* cache at most once.
* The returned rule is a reference into the cache.
*
* @param numberOfPoints Order of the rule to be retrieved.
* @return the points and weights corresponding to the given order.
* @throws DimensionMismatchException if the elements of the rule pair do not
* have the same length.
*/
protected synchronized Pair<T[], T[]> getRuleInternal(int numberOfPoints)
throws DimensionMismatchException {
final Pair<T[], T[]> rule = pointsAndWeights.get(numberOfPoints);
if (rule == null) {
addRule(computeRule(numberOfPoints));
// The rule should be available now.
return getRuleInternal(numberOfPoints);
}
return rule;
}
/**
* Stores a rule.
*
* @param rule Rule to be stored.
* @throws DimensionMismatchException if the elements of the pair do not
* have the same length.
*/
protected void addRule(Pair<T[], T[]> rule) throws DimensionMismatchException {
if (rule.getFirst().length != rule.getSecond().length) {
throw new DimensionMismatchException(rule.getFirst().length,
rule.getSecond().length);
}
pointsAndWeights.put(rule.getFirst().length, rule);
}
/**
* Computes the rule for the given order.
*
* @param numberOfPoints Order of the rule to be computed.
* @return the computed rule.
* @throws DimensionMismatchException if the elements of the pair do not
* have the same length.
*/
protected abstract Pair<T[], T[]> computeRule(int numberOfPoints)
throws DimensionMismatchException;
/**
* Converts the from the actual {@code Number} type to {@code double}
*
* @param <T> Type of the number used to represent the points and
* weights of the quadrature rules.
* @param rule Points and weights.
* @return points and weights as {@code double}s.
*/
private static <T extends Number> Pair<double[], double[]> convertToDouble(Pair<T[], T[]> rule) {
final T[] pT = rule.getFirst();
final T[] wT = rule.getSecond();
final int len = pT.length;
final double[] pD = new double[len];
final double[] wD = new double[len];
for (int i = 0; i < len; i++) {
pD[i] = pT[i].doubleValue();
wD[i] = wT[i].doubleValue();
}
return new Pair<double[], double[]>(pD, wD);
}
}

129
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/GaussIntegrator.java

@ -0,0 +1,129 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NonMonotonicSequenceException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.MathArrays;
import com.fr.third.org.apache.commons.math3.util.Pair;
/**
* Class that implements the Gaussian rule for
* {@link #integrate(UnivariateFunction) integrating} a weighted
* function.
*
* @since 3.1
*/
public class GaussIntegrator {
/** Nodes. */
private final double[] points;
/** Nodes weights. */
private final double[] weights;
/**
* Creates an integrator from the given {@code points} and {@code weights}.
* The integration interval is defined by the first and last value of
* {@code points} which must be sorted in increasing order.
*
* @param points Integration points.
* @param weights Weights of the corresponding integration nodes.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
* @throws DimensionMismatchException if points and weights don't have the same length
*/
public GaussIntegrator(double[] points,
double[] weights)
throws NonMonotonicSequenceException, DimensionMismatchException {
if (points.length != weights.length) {
throw new DimensionMismatchException(points.length,
weights.length);
}
MathArrays.checkOrder(points, MathArrays.OrderDirection.INCREASING, true, true);
this.points = points.clone();
this.weights = weights.clone();
}
/**
* Creates an integrator from the given pair of points (first element of
* the pair) and weights (second element of the pair.
*
* @param pointsAndWeights Integration points and corresponding weights.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
*
* @see #GaussIntegrator(double[], double[])
*/
public GaussIntegrator(Pair<double[], double[]> pointsAndWeights)
throws NonMonotonicSequenceException {
this(pointsAndWeights.getFirst(), pointsAndWeights.getSecond());
}
/**
* Returns an estimate of the integral of {@code f(x) * w(x)},
* where {@code w} is a weight function that depends on the actual
* flavor of the Gauss integration scheme.
* The algorithm uses the points and associated weights, as passed
* to the {@link #GaussIntegrator(double[],double[]) constructor}.
*
* @param f Function to integrate.
* @return the integral of the weighted function.
*/
public double integrate(UnivariateFunction f) {
double s = 0;
double c = 0;
for (int i = 0; i < points.length; i++) {
final double x = points[i];
final double w = weights[i];
final double y = w * f.value(x) - c;
final double t = s + y;
c = (t - s) - y;
s = t;
}
return s;
}
/**
* @return the order of the integration rule (the number of integration
* points).
*/
public int getNumberOfPoints() {
return points.length;
}
/**
* Gets the integration point at the given index.
* The index must be in the valid range but no check is performed.
* @param index index of the integration point
* @return the integration point.
*/
public double getPoint(int index) {
return points[index];
}
/**
* Gets the weight of the integration point at the given index.
* The index must be in the valid range but no check is performed.
* @param index index of the integration point
* @return the weight.
*/
public double getWeight(int index) {
return weights[index];
}
}

168
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/GaussIntegratorFactory.java

@ -0,0 +1,168 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import java.math.BigDecimal;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NotStrictlyPositiveException;
import com.fr.third.org.apache.commons.math3.util.Pair;
/**
* Class that provides different ways to compute the nodes and weights to be
* used by the {@link GaussIntegrator Gaussian integration rule}.
*
* @since 3.1
*/
public class GaussIntegratorFactory {
/** Generator of Gauss-Legendre integrators. */
private final BaseRuleFactory<Double> legendre = new LegendreRuleFactory();
/** Generator of Gauss-Legendre integrators. */
private final BaseRuleFactory<BigDecimal> legendreHighPrecision = new LegendreHighPrecisionRuleFactory();
/** Generator of Gauss-Hermite integrators. */
private final BaseRuleFactory<Double> hermite = new HermiteRuleFactory();
/**
* Creates a Gauss-Legendre integrator of the given order.
* The call to the
* {@link GaussIntegrator#integrate(UnivariateFunction)
* integrate} method will perform an integration on the natural interval
* {@code [-1 , 1]}.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Legendre integrator.
*/
public GaussIntegrator legendre(int numberOfPoints) {
return new GaussIntegrator(getRule(legendre, numberOfPoints));
}
/**
* Creates a Gauss-Legendre integrator of the given order.
* The call to the
* {@link GaussIntegrator#integrate(UnivariateFunction)
* integrate} method will perform an integration on the given interval.
*
* @param numberOfPoints Order of the integration rule.
* @param lowerBound Lower bound of the integration interval.
* @param upperBound Upper bound of the integration interval.
* @return a Gauss-Legendre integrator.
* @throws NotStrictlyPositiveException if number of points is not positive
*/
public GaussIntegrator legendre(int numberOfPoints,
double lowerBound,
double upperBound)
throws NotStrictlyPositiveException {
return new GaussIntegrator(transform(getRule(legendre, numberOfPoints),
lowerBound, upperBound));
}
/**
* Creates a Gauss-Legendre integrator of the given order.
* The call to the
* {@link GaussIntegrator#integrate(UnivariateFunction)
* integrate} method will perform an integration on the natural interval
* {@code [-1 , 1]}.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Legendre integrator.
* @throws NotStrictlyPositiveException if number of points is not positive
*/
public GaussIntegrator legendreHighPrecision(int numberOfPoints)
throws NotStrictlyPositiveException {
return new GaussIntegrator(getRule(legendreHighPrecision, numberOfPoints));
}
/**
* Creates an integrator of the given order, and whose call to the
* {@link GaussIntegrator#integrate(UnivariateFunction)
* integrate} method will perform an integration on the given interval.
*
* @param numberOfPoints Order of the integration rule.
* @param lowerBound Lower bound of the integration interval.
* @param upperBound Upper bound of the integration interval.
* @return a Gauss-Legendre integrator.
* @throws NotStrictlyPositiveException if number of points is not positive
*/
public GaussIntegrator legendreHighPrecision(int numberOfPoints,
double lowerBound,
double upperBound)
throws NotStrictlyPositiveException {
return new GaussIntegrator(transform(getRule(legendreHighPrecision, numberOfPoints),
lowerBound, upperBound));
}
/**
* Creates a Gauss-Hermite integrator of the given order.
* The call to the
* {@link SymmetricGaussIntegrator#integrate(UnivariateFunction)
* integrate} method will perform a weighted integration on the interval
* \([-\infty, +\infty]\): the computed value is the improper integral of
* \(e^{-x^2}f(x)\)
* where \(f(x)\) is the function passed to the
* {@link SymmetricGaussIntegrator#integrate(UnivariateFunction)
* integrate} method.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Hermite integrator.
*/
public SymmetricGaussIntegrator hermite(int numberOfPoints) {
return new SymmetricGaussIntegrator(getRule(hermite, numberOfPoints));
}
/**
* @param factory Integration rule factory.
* @param numberOfPoints Order of the integration rule.
* @return the integration nodes and weights.
* @throws NotStrictlyPositiveException if number of points is not positive
* @throws DimensionMismatchException if the elements of the rule pair do not
* have the same length.
*/
private static Pair<double[], double[]> getRule(BaseRuleFactory<? extends Number> factory,
int numberOfPoints)
throws NotStrictlyPositiveException, DimensionMismatchException {
return factory.getRule(numberOfPoints);
}
/**
* Performs a change of variable so that the integration can be performed
* on an arbitrary interval {@code [a, b]}.
* It is assumed that the natural interval is {@code [-1, 1]}.
*
* @param rule Original points and weights.
* @param a Lower bound of the integration interval.
* @param b Lower bound of the integration interval.
* @return the points and weights adapted to the new interval.
*/
private static Pair<double[], double[]> transform(Pair<double[], double[]> rule,
double a,
double b) {
final double[] points = rule.getFirst();
final double[] weights = rule.getSecond();
// Scaling
final double scale = (b - a) / 2;
final double shift = a + scale;
for (int i = 0; i < points.length; i++) {
points[i] = points[i] * scale + shift;
weights[i] *= scale;
}
return new Pair<double[], double[]>(points, weights);
}
}

177
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/HermiteRuleFactory.java

@ -0,0 +1,177 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.util.Pair;
import com.fr.third.org.apache.commons.math3.util.FastMath;
/**
* Factory that creates a
* <a href="http://en.wikipedia.org/wiki/Gauss-Hermite_quadrature">
* Gauss-type quadrature rule using Hermite polynomials</a>
* of the first kind.
* Such a quadrature rule allows the calculation of improper integrals
* of a function
* <p>
* \(f(x) e^{-x^2}\)
* </p><p>
* Recurrence relation and weights computation follow
* <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
* </p><p>
* The coefficients of the standard Hermite polynomials grow very rapidly.
* In order to avoid overflows, each Hermite polynomial is normalized with
* respect to the underlying scalar product.
* The initial interval for the application of the bisection method is
* based on the roots of the previous Hermite polynomial (interlacing).
* Upper and lower bounds of these roots are provided by </p>
* <blockquote>
* I. Krasikov,
* <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>,
* Journal of Approximation theory <b>111</b>, 31-49
* </blockquote>
*
* @since 3.3
*/
public class HermiteRuleFactory extends BaseRuleFactory<Double> {
/** &pi;<sup>1/2</sup> */
private static final double SQRT_PI = 1.77245385090551602729;
/** &pi;<sup>-1/4</sup> */
private static final double H0 = 7.5112554446494248286e-1;
/** &pi;<sup>-1/4</sup> &radic;2 */
private static final double H1 = 1.0622519320271969145;
/** {@inheritDoc} */
@Override
protected Pair<Double[], Double[]> computeRule(int numberOfPoints)
throws DimensionMismatchException {
if (numberOfPoints == 1) {
// Break recursion.
return new Pair<Double[], Double[]>(new Double[] { 0d },
new Double[] { SQRT_PI });
}
// Get previous rule.
// If it has not been computed yet it will trigger a recursive call
// to this method.
final int lastNumPoints = numberOfPoints - 1;
final Double[] previousPoints = getRuleInternal(lastNumPoints).getFirst();
// Compute next rule.
final Double[] points = new Double[numberOfPoints];
final Double[] weights = new Double[numberOfPoints];
final double sqrtTwoTimesLastNumPoints = FastMath.sqrt(2 * lastNumPoints);
final double sqrtTwoTimesNumPoints = FastMath.sqrt(2 * numberOfPoints);
// Find i-th root of H[n+1] by bracketing.
final int iMax = numberOfPoints / 2;
for (int i = 0; i < iMax; i++) {
// Lower-bound of the interval.
double a = (i == 0) ? -sqrtTwoTimesLastNumPoints : previousPoints[i - 1].doubleValue();
// Upper-bound of the interval.
double b = (iMax == 1) ? -0.5 : previousPoints[i].doubleValue();
// H[j-1](a)
double hma = H0;
// H[j](a)
double ha = H1 * a;
// H[j-1](b)
double hmb = H0;
// H[j](b)
double hb = H1 * b;
for (int j = 1; j < numberOfPoints; j++) {
// Compute H[j+1](a) and H[j+1](b)
final double jp1 = j + 1;
final double s = FastMath.sqrt(2 / jp1);
final double sm = FastMath.sqrt(j / jp1);
final double hpa = s * a * ha - sm * hma;
final double hpb = s * b * hb - sm * hmb;
hma = ha;
ha = hpa;
hmb = hb;
hb = hpb;
}
// Now ha = H[n+1](a), and hma = H[n](a) (same holds for b).
// Middle of the interval.
double c = 0.5 * (a + b);
// P[j-1](c)
double hmc = H0;
// P[j](c)
double hc = H1 * c;
boolean done = false;
while (!done) {
done = b - a <= Math.ulp(c);
hmc = H0;
hc = H1 * c;
for (int j = 1; j < numberOfPoints; j++) {
// Compute H[j+1](c)
final double jp1 = j + 1;
final double s = FastMath.sqrt(2 / jp1);
final double sm = FastMath.sqrt(j / jp1);
final double hpc = s * c * hc - sm * hmc;
hmc = hc;
hc = hpc;
}
// Now h = H[n+1](c) and hm = H[n](c).
if (!done) {
if (ha * hc < 0) {
b = c;
hmb = hmc;
hb = hc;
} else {
a = c;
hma = hmc;
ha = hc;
}
c = 0.5 * (a + b);
}
}
final double d = sqrtTwoTimesNumPoints * hmc;
final double w = 2 / (d * d);
points[i] = c;
weights[i] = w;
final int idx = lastNumPoints - i;
points[idx] = -c;
weights[idx] = w;
}
// If "numberOfPoints" is odd, 0 is a root.
// Note: as written, the test for oddness will work for negative
// integers too (although it is not necessary here), preventing
// a FindBugs warning.
if (numberOfPoints % 2 != 0) {
double hm = H0;
for (int j = 1; j < numberOfPoints; j += 2) {
final double jp1 = j + 1;
hm = -FastMath.sqrt(j / jp1) * hm;
}
final double d = sqrtTwoTimesNumPoints * hm;
final double w = 2 / (d * d);
points[iMax] = 0d;
weights[iMax] = w;
}
return new Pair<Double[], Double[]>(points, weights);
}
}

215
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java

@ -0,0 +1,215 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import java.math.BigDecimal;
import java.math.MathContext;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.util.Pair;
/**
* Factory that creates Gauss-type quadrature rule using Legendre polynomials.
* In this implementation, the lower and upper bounds of the natural interval
* of integration are -1 and 1, respectively.
* The Legendre polynomials are evaluated using the recurrence relation
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
*
* @since 3.1
*/
public class LegendreHighPrecisionRuleFactory extends BaseRuleFactory<BigDecimal> {
/** Settings for enhanced precision computations. */
private final MathContext mContext;
/** The number {@code 2}. */
private final BigDecimal two;
/** The number {@code -1}. */
private final BigDecimal minusOne;
/** The number {@code 0.5}. */
private final BigDecimal oneHalf;
/**
* Default precision is {@link MathContext#DECIMAL128 DECIMAL128}.
*/
public LegendreHighPrecisionRuleFactory() {
this(MathContext.DECIMAL128);
}
/**
* @param mContext Precision setting for computing the quadrature rules.
*/
public LegendreHighPrecisionRuleFactory(MathContext mContext) {
this.mContext = mContext;
two = new BigDecimal("2", mContext);
minusOne = new BigDecimal("-1", mContext);
oneHalf = new BigDecimal("0.5", mContext);
}
/** {@inheritDoc} */
@Override
protected Pair<BigDecimal[], BigDecimal[]> computeRule(int numberOfPoints)
throws DimensionMismatchException {
if (numberOfPoints == 1) {
// Break recursion.
return new Pair<BigDecimal[], BigDecimal[]>(new BigDecimal[] { BigDecimal.ZERO },
new BigDecimal[] { two });
}
// Get previous rule.
// If it has not been computed yet it will trigger a recursive call
// to this method.
final BigDecimal[] previousPoints = getRuleInternal(numberOfPoints - 1).getFirst();
// Compute next rule.
final BigDecimal[] points = new BigDecimal[numberOfPoints];
final BigDecimal[] weights = new BigDecimal[numberOfPoints];
// Find i-th root of P[n+1] by bracketing.
final int iMax = numberOfPoints / 2;
for (int i = 0; i < iMax; i++) {
// Lower-bound of the interval.
BigDecimal a = (i == 0) ? minusOne : previousPoints[i - 1];
// Upper-bound of the interval.
BigDecimal b = (iMax == 1) ? BigDecimal.ONE : previousPoints[i];
// P[j-1](a)
BigDecimal pma = BigDecimal.ONE;
// P[j](a)
BigDecimal pa = a;
// P[j-1](b)
BigDecimal pmb = BigDecimal.ONE;
// P[j](b)
BigDecimal pb = b;
for (int j = 1; j < numberOfPoints; j++) {
final BigDecimal b_two_j_p_1 = new BigDecimal(2 * j + 1, mContext);
final BigDecimal b_j = new BigDecimal(j, mContext);
final BigDecimal b_j_p_1 = new BigDecimal(j + 1, mContext);
// Compute P[j+1](a)
// ppa = ((2 * j + 1) * a * pa - j * pma) / (j + 1);
BigDecimal tmp1 = a.multiply(b_two_j_p_1, mContext);
tmp1 = pa.multiply(tmp1, mContext);
BigDecimal tmp2 = pma.multiply(b_j, mContext);
// P[j+1](a)
BigDecimal ppa = tmp1.subtract(tmp2, mContext);
ppa = ppa.divide(b_j_p_1, mContext);
// Compute P[j+1](b)
// ppb = ((2 * j + 1) * b * pb - j * pmb) / (j + 1);
tmp1 = b.multiply(b_two_j_p_1, mContext);
tmp1 = pb.multiply(tmp1, mContext);
tmp2 = pmb.multiply(b_j, mContext);
// P[j+1](b)
BigDecimal ppb = tmp1.subtract(tmp2, mContext);
ppb = ppb.divide(b_j_p_1, mContext);
pma = pa;
pa = ppa;
pmb = pb;
pb = ppb;
}
// Now pa = P[n+1](a), and pma = P[n](a). Same holds for b.
// Middle of the interval.
BigDecimal c = a.add(b, mContext).multiply(oneHalf, mContext);
// P[j-1](c)
BigDecimal pmc = BigDecimal.ONE;
// P[j](c)
BigDecimal pc = c;
boolean done = false;
while (!done) {
BigDecimal tmp1 = b.subtract(a, mContext);
BigDecimal tmp2 = c.ulp().multiply(BigDecimal.TEN, mContext);
done = tmp1.compareTo(tmp2) <= 0;
pmc = BigDecimal.ONE;
pc = c;
for (int j = 1; j < numberOfPoints; j++) {
final BigDecimal b_two_j_p_1 = new BigDecimal(2 * j + 1, mContext);
final BigDecimal b_j = new BigDecimal(j, mContext);
final BigDecimal b_j_p_1 = new BigDecimal(j + 1, mContext);
// Compute P[j+1](c)
tmp1 = c.multiply(b_two_j_p_1, mContext);
tmp1 = pc.multiply(tmp1, mContext);
tmp2 = pmc.multiply(b_j, mContext);
// P[j+1](c)
BigDecimal ppc = tmp1.subtract(tmp2, mContext);
ppc = ppc.divide(b_j_p_1, mContext);
pmc = pc;
pc = ppc;
}
// Now pc = P[n+1](c) and pmc = P[n](c).
if (!done) {
if (pa.signum() * pc.signum() <= 0) {
b = c;
pmb = pmc;
pb = pc;
} else {
a = c;
pma = pmc;
pa = pc;
}
c = a.add(b, mContext).multiply(oneHalf, mContext);
}
}
final BigDecimal nP = new BigDecimal(numberOfPoints, mContext);
BigDecimal tmp1 = pmc.subtract(c.multiply(pc, mContext), mContext);
tmp1 = tmp1.multiply(nP);
tmp1 = tmp1.pow(2, mContext);
BigDecimal tmp2 = c.pow(2, mContext);
tmp2 = BigDecimal.ONE.subtract(tmp2, mContext);
tmp2 = tmp2.multiply(two, mContext);
tmp2 = tmp2.divide(tmp1, mContext);
points[i] = c;
weights[i] = tmp2;
final int idx = numberOfPoints - i - 1;
points[idx] = c.negate(mContext);
weights[idx] = tmp2;
}
// If "numberOfPoints" is odd, 0 is a root.
// Note: as written, the test for oddness will work for negative
// integers too (although it is not necessary here), preventing
// a FindBugs warning.
if (numberOfPoints % 2 != 0) {
BigDecimal pmc = BigDecimal.ONE;
for (int j = 1; j < numberOfPoints; j += 2) {
final BigDecimal b_j = new BigDecimal(j, mContext);
final BigDecimal b_j_p_1 = new BigDecimal(j + 1, mContext);
// pmc = -j * pmc / (j + 1);
pmc = pmc.multiply(b_j, mContext);
pmc = pmc.divide(b_j_p_1, mContext);
pmc = pmc.negate(mContext);
}
// 2 / pow(numberOfPoints * pmc, 2);
final BigDecimal nP = new BigDecimal(numberOfPoints, mContext);
BigDecimal tmp1 = pmc.multiply(nP, mContext);
tmp1 = tmp1.pow(2, mContext);
BigDecimal tmp2 = two.divide(tmp1, mContext);
points[iMax] = BigDecimal.ZERO;
weights[iMax] = tmp2;
}
return new Pair<BigDecimal[], BigDecimal[]>(points, weights);
}
}

140
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/LegendreRuleFactory.java

@ -0,0 +1,140 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.util.Pair;
/**
* Factory that creates Gauss-type quadrature rule using Legendre polynomials.
* In this implementation, the lower and upper bounds of the natural interval
* of integration are -1 and 1, respectively.
* The Legendre polynomials are evaluated using the recurrence relation
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
*
* @since 3.1
*/
public class LegendreRuleFactory extends BaseRuleFactory<Double> {
/** {@inheritDoc} */
@Override
protected Pair<Double[], Double[]> computeRule(int numberOfPoints)
throws DimensionMismatchException {
if (numberOfPoints == 1) {
// Break recursion.
return new Pair<Double[], Double[]>(new Double[] { 0d },
new Double[] { 2d });
}
// Get previous rule.
// If it has not been computed yet it will trigger a recursive call
// to this method.
final Double[] previousPoints = getRuleInternal(numberOfPoints - 1).getFirst();
// Compute next rule.
final Double[] points = new Double[numberOfPoints];
final Double[] weights = new Double[numberOfPoints];
// Find i-th root of P[n+1] by bracketing.
final int iMax = numberOfPoints / 2;
for (int i = 0; i < iMax; i++) {
// Lower-bound of the interval.
double a = (i == 0) ? -1 : previousPoints[i - 1].doubleValue();
// Upper-bound of the interval.
double b = (iMax == 1) ? 1 : previousPoints[i].doubleValue();
// P[j-1](a)
double pma = 1;
// P[j](a)
double pa = a;
// P[j-1](b)
double pmb = 1;
// P[j](b)
double pb = b;
for (int j = 1; j < numberOfPoints; j++) {
final int two_j_p_1 = 2 * j + 1;
final int j_p_1 = j + 1;
// P[j+1](a)
final double ppa = (two_j_p_1 * a * pa - j * pma) / j_p_1;
// P[j+1](b)
final double ppb = (two_j_p_1 * b * pb - j * pmb) / j_p_1;
pma = pa;
pa = ppa;
pmb = pb;
pb = ppb;
}
// Now pa = P[n+1](a), and pma = P[n](a) (same holds for b).
// Middle of the interval.
double c = 0.5 * (a + b);
// P[j-1](c)
double pmc = 1;
// P[j](c)
double pc = c;
boolean done = false;
while (!done) {
done = b - a <= Math.ulp(c);
pmc = 1;
pc = c;
for (int j = 1; j < numberOfPoints; j++) {
// P[j+1](c)
final double ppc = ((2 * j + 1) * c * pc - j * pmc) / (j + 1);
pmc = pc;
pc = ppc;
}
// Now pc = P[n+1](c) and pmc = P[n](c).
if (!done) {
if (pa * pc <= 0) {
b = c;
pmb = pmc;
pb = pc;
} else {
a = c;
pma = pmc;
pa = pc;
}
c = 0.5 * (a + b);
}
}
final double d = numberOfPoints * (pmc - c * pc);
final double w = 2 * (1 - c * c) / (d * d);
points[i] = c;
weights[i] = w;
final int idx = numberOfPoints - i - 1;
points[idx] = -c;
weights[idx] = w;
}
// If "numberOfPoints" is odd, 0 is a root.
// Note: as written, the test for oddness will work for negative
// integers too (although it is not necessary here), preventing
// a FindBugs warning.
if (numberOfPoints % 2 != 0) {
double pmc = 1;
for (int j = 1; j < numberOfPoints; j += 2) {
pmc = -j * pmc / (j + 1);
}
final double d = numberOfPoints * pmc;
final double w = 2 / (d * d);
points[iMax] = 0d;
weights[iMax] = w;
}
return new Pair<Double[], Double[]>(points, weights);
}
}

103
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/SymmetricGaussIntegrator.java

@ -0,0 +1,103 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;
import com.fr.third.org.apache.commons.math3.exception.DimensionMismatchException;
import com.fr.third.org.apache.commons.math3.exception.NonMonotonicSequenceException;
import com.fr.third.org.apache.commons.math3.analysis.UnivariateFunction;
import com.fr.third.org.apache.commons.math3.util.Pair;
/**
* This class's implements {@link #integrate(UnivariateFunction) integrate}
* method assuming that the integral is symmetric about 0.
* This allows to reduce numerical errors.
*
* @since 3.3
*/
public class SymmetricGaussIntegrator extends GaussIntegrator {
/**
* Creates an integrator from the given {@code points} and {@code weights}.
* The integration interval is defined by the first and last value of
* {@code points} which must be sorted in increasing order.
*
* @param points Integration points.
* @param weights Weights of the corresponding integration nodes.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
* @throws DimensionMismatchException if points and weights don't have the same length
*/
public SymmetricGaussIntegrator(double[] points,
double[] weights)
throws NonMonotonicSequenceException, DimensionMismatchException {
super(points, weights);
}
/**
* Creates an integrator from the given pair of points (first element of
* the pair) and weights (second element of the pair.
*
* @param pointsAndWeights Integration points and corresponding weights.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
*
* @see #SymmetricGaussIntegrator(double[], double[])
*/
public SymmetricGaussIntegrator(Pair<double[], double[]> pointsAndWeights)
throws NonMonotonicSequenceException {
this(pointsAndWeights.getFirst(), pointsAndWeights.getSecond());
}
/**
* {@inheritDoc}
*/
@Override
public double integrate(UnivariateFunction f) {
final int ruleLength = getNumberOfPoints();
if (ruleLength == 1) {
return getWeight(0) * f.value(0d);
}
final int iMax = ruleLength / 2;
double s = 0;
double c = 0;
for (int i = 0; i < iMax; i++) {
final double p = getPoint(i);
final double w = getWeight(i);
final double f1 = f.value(p);
final double f2 = f.value(-p);
final double y = w * (f1 + f2) - c;
final double t = s + y;
c = (t - s) - y;
s = t;
}
if (ruleLength % 2 != 0) {
final double w = getWeight(iMax);
final double y = w * f.value(0d) - c;
final double t = s + y;
s = t;
}
return s;
}
}

22
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/gauss/package-info.java

@ -0,0 +1,22 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* Gauss family of quadrature schemes.
*
*/
package com.fr.third.org.apache.commons.math3.analysis.integration.gauss;

22
fine-commons-math3/src/com/fr/third/org/apache/commons/math3/analysis/integration/package-info.java

@ -0,0 +1,22 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* Numerical integration (quadrature) algorithms for univariate real functions.
*
*/
package com.fr.third.org.apache.commons.math3.analysis.integration;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save