This breaks all existing callers once. Applications are not supposed
to build against the internal storage API unless they can accept API
churn and make necessary updates as versions change.
Change-Id: I2ab1327c202ef2003565e1b0770a583970e432e9
A pack bitmap index is an additional index of compressed
bitmaps of the object graph. Furthermore, a logical API of the index
functionality is included, as it is expected to be used by the
PackWriter.
Compressed bitmaps are created using the javaewah library, which is a
word-aligned compressed variant of the Java bitset class based on
run-length encoding. The library only works with positive integer
values. Thus, the maximum number of ObjectIds in a pack file that
this index can currently support is limited to Integer.MAX_VALUE.
Every ObjectId is given an integer mapping. The integer is the
position of the ObjectId in the complete ObjectId list, sorted
by offset, for the pack file. That integer is what the bitmaps
use to reference the ObjectId. Currently, the new index format can
only be used with pack files that contain a complete closure of the
object graph e.g. the result of a garbage collection.
The index file includes four bitmaps for the Git object types i.e.
commits, trees, blobs, and tags. In addition, a collection of
bitmaps keyed by an ObjectId is also included. The bitmap for each entry
in the collection represents the full closure of ObjectIds reachable
from the keyed ObjectId (including the keyed ObjectId itself). The
bitmaps are further compressed by XORing the current bitmaps against
prior bitmaps in the index, and selecting the smallest representation.
The XOR'd bitmap and offset from the current entry to the position
of the bitmap to XOR against is the actual representation of the entry
in the index file. Each entry contains one byte, which is currently
used to note whether the bitmap should be blindly reused.
Change-Id: Id328724bf6b4c8366a088233098c18643edcf40f
Otherwise loading javax.net.ssl.TrustManager fails if
osgi.compatibility.bootdelegation=false which became the Equinox default
since bug 344850 was fixed.
Bug: 392056
Change-Id: I464871723649095942dbf77da93890ac8ec39075
Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>
Signed-off-by: Chris Aniszczyk <zx@twitter.com>
This prevents a lot of unnecessary warnings about disouraged usage of
the org.eclipse.jgit.internal package within JGit itself.
Change-Id: Ia6683902809425fd7245e7d5d344c2ff8f317ebb
The package was removed in I763590a45d75f00a09097ab6f89581a3bbd3c797
Change-Id: Ifa9e75714f85d17609f9bf61581aaed0631a6fa7
Signed-off-by: Kevin Sawicki <kevin@github.com>
It seems pack200 became unable to correctly pack the bundle
org.eclipse.jgit (see bug 372845). Hence mark it to be excluded from
this packing step following the workaround which worked for
org.eclipse.jst.jsf.core (bug 335806).
Bug: 372845
Change-Id: I2e3d20645ac49125472ddc235afbe9f3c7480caf
Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>
Adds the following commands:
- Add
- Init
- Status
- Sync
- Update
This also updates AddCommand so that file patterns added that
are submodules can be staged in the index.
Change-Id: Ie5112aa26430e5a2a3acd65a7b0e1d76067dc545
Signed-off-by: Kevin Sawicki <kevin@github.com>
Signed-off-by: Chris Aniszczyk <zx@twitter.com>
In practice the DHT storage layer has not been performing as well as
large scale server environments want to see from a Git server.
The performance of the DHT schema degrades rapidly as small changes
are pushed into the repository due to the chunk size being less than
1/3 of the pushed pack size. Small chunks cause poor prefetch
performance during reading, and require significantly longer prefetch
lists inside of the chunk meta field to work around the small size.
The DHT code is very complex (>17,000 lines of code) and is very
sensitive to the underlying database round-trip time, as well as the
way objects were written into the pack stream that was chunked and
stored on the database. A poor pack layout (from any version of C Git
prior to Junio reworking it) can cause the DHT code to be unable to
enumerate the objects of the linux-2.6 repository in a completable
time scale.
Performing a clone from a DHT stored repository of 2 million objects
takes 2 million row lookups in the DHT to locate the OBJECT_INDEX row
for each object being cloned. This is very difficult for some DHTs to
scale, even at 5000 rows/second the lookup stage alone takes 6 minutes
(on local filesystem, this is almost too fast to bother measuring).
Some servers like Apache Cassandra just fall over and cannot complete
the 2 million lookups in rapid fire.
On a ~400 MiB repository, the DHT schema has an extra 25 MiB of
redundant data that gets downloaded to the JGit process, and that is
before you consider the cost of the OBJECT_INDEX table also being
fully loaded, which is at least 223 MiB of data for the linux kernel
repository. In the DHT schema answering a `git clone` of the ~400 MiB
linux kernel needs to load 248 MiB of "index" data from the DHT, in
addition to the ~400 MiB of pack data that gets sent to the client.
This is 193 MiB more data to be accessed than the native filesystem
format, but it needs to come over a much smaller pipe (local Ethernet
typically) than the local SATA disk drive.
I also never got around to writing the "repack" support for the DHT
schema, as it turns out to be fairly complex to safely repack data in
the repository while also trying to minimize the amount of changes
made to the database, due to very common limitations on database
mutation rates..
This new DFS storage layer fixes a lot of those issues by taking the
simple approach for storing relatively standard Git pack and index
files on an abstract filesystem. Packs are accessed by an in-process
buffer cache, similar to the WindowCache used by the local filesystem
storage layer. Unlike the local file IO, there are some assumptions
that the storage system has relatively high latency and no concept of
"file handles". Instead it looks at the file more like HTTP byte range
requests, where a read channel is a simply a thunk to trigger a read
request over the network.
The DFS code in this change is still abstract, it does not store on
any particular filesystem, but is fairly well suited to the Amazon S3
or Apache Hadoop HDFS. Storing packs directly on HDFS rather than
HBase removes a layer of abstraction, as most HBase row reads turn
into an HDFS read.
Most of the DFS code in this change was blatently copied from the
local filesystem code. Most parts should be refactored to be shared
between the two storage systems, but right now I am hesistent to do
this due to how well tuned the local filesystem code currently is.
Change-Id: Iec524abdf172e9ec5485d6c88ca6512cd8a6eafb