Tree:
c9e507c0b9
master
next
stable-0.10
stable-0.11
stable-0.12
stable-0.7
stable-0.8
stable-0.9
stable-1.0
stable-1.1
stable-1.2
stable-1.3
stable-2.0
stable-2.1
stable-2.2
stable-2.3
stable-3.0
stable-3.1
stable-3.2
stable-3.3
stable-3.4
stable-3.5
stable-3.6
stable-3.7
stable-4.0
stable-4.1
stable-4.10
stable-4.11
stable-4.2
stable-4.3
stable-4.4
stable-4.5
stable-4.6
stable-4.7
stable-4.8
stable-4.9
stable-5.0
stable-5.1
stable-5.2
stable-5.3
stable-5.4
stable-5.5
stable-5.6
stable-5.7
stable-5.8
spearce-gpg-pub
v0.10.1
v0.11.1
v0.11.3
v0.12.1
v0.7.0
v0.7.1
v0.8.1
v0.8.4
v0.9.1
v0.9.3
v1.0.0.201106011211-rc3
v1.0.0.201106051725-r
v1.0.0.201106071701-r
v1.0.0.201106081625-r
v1.0.0.201106090707-r
v1.1.0.201109011030-rc2
v1.1.0.201109071825-rc3
v1.1.0.201109151100-r
v1.2.0.201112221803-r
v1.3.0.201202121842-rc4
v1.3.0.201202151440-r
v2.0.0.201206130900-r
v2.1.0.201209190230-r
v2.2.0.201212191850-r
v2.3.0.201302130906
v2.3.1.201302201838-r
v3.0.0.201305080800-m7
v3.0.0.201305281830-rc2
v3.0.0.201306040240-rc3
v3.0.0.201306101825-r
v3.0.2.201309041250-rc2
v3.0.2.201311090911-r
v3.0.3.201309161630-r
v3.1.0.201309270735-rc1
v3.1.0.201310021548-r
v3.2.0.201311130903-m3
v3.2.0.201312181205-r
v3.3.0.201402191814-rc1
v3.3.0.201403021825-r
v3.3.1.201403241930-r
v3.3.2.201404171909-r
v3.4.0.201405051725-m7
v3.4.0.201405211411-rc1
v3.4.0.201405281120-rc2
v3.4.0.201406041058-rc3
v3.4.0.201406110918-r
v3.4.1.201406201815-r
v3.4.2.201412180340-r
v3.5.0.201409071800-rc1
v3.5.0.201409260305-r
v3.5.1.201410131835-r
v3.5.2.201411120430-r
v3.5.3.201412180710-r
v3.6.0.201411121045-m1
v3.6.0.201412230720-r
v3.6.1.201501031845-r
v3.6.2.201501210735-r
v3.7.0.201502031740-rc1
v3.7.0.201502260915-r
v3.7.1.201504261725-r
v4.0.0.201503231230-m1
v4.0.0.201505050340-m2
v4.0.0.201505191015-rc1
v4.0.0.201505260635-rc2
v4.0.0.201506020755-rc3
v4.0.0.201506090130-r
v4.0.1.201506240215-r
v4.1.0.201509280440-r
v4.1.1.201511131810-r
v4.1.2.201602141800-r
v4.10.0.201712302008-r
v4.11.0.201803080745-r
v4.11.1.201807311124-r
v4.11.2.201809100523-r
v4.11.3.201809181037-r
v4.11.4.201810060650-r
v4.11.5.201810191925-r
v4.11.6.201812241910-r
v4.11.7.201903122105-r
v4.11.8.201904181247-r
v4.11.9.201909030838-r
v4.2.0.201511101648-m1
v4.2.0.201601211800-r
v4.3.0.201603230630-rc1
v4.3.0.201604071810-r
v4.3.1.201605051710-r
v4.4.0.201605041135-m1
v4.4.0.201605250940-rc1
v4.4.0.201606011500-rc2
v4.4.0.201606070830-r
v4.4.1.201607150455-r
v4.5.0.201609210915-r
v4.5.1.201703201650-r
v4.5.2.201704071617-r
v4.5.3.201708160445-r
v4.5.4.201711221230-r
v4.5.5.201812240535-r
v4.5.6.201903121547-r
v4.5.7.201904151645-r
v4.6.0.201612231935-r
v4.6.1.201703071140-r
v4.7.0.201704051617-r
v4.7.1.201706071930-r
v4.7.2.201807261330-r
v4.7.3.201809090215-r
v4.7.4.201809180905-r
v4.7.5.201810051826-r
v4.7.6.201810191618-r
v4.7.7.201812240805-r
v4.7.8.201903121755-r
v4.7.9.201904161809-r
v4.8.0.201705170830-rc1
v4.8.0.201706111038-r
v4.9.0.201710071750-r
v4.9.1.201712030800-r
v4.9.10.201904181027-r
v4.9.2.201712150930-r
v4.9.3.201807311005-r
v4.9.4.201809090327-r
v4.9.5.201809180939-r
v4.9.6.201810051924-r
v4.9.7.201810191756-r
v4.9.8.201812241815-r
v4.9.9.201903122025-r
v5.0.0.201805151920-m7
v5.0.0.201805221745-rc1
v5.0.0.201805301535-rc2
v5.0.0.201806050710-rc3
v5.0.0.201806131550-r
v5.0.1.201806211838-r
v5.0.2.201807311906-r
v5.0.3.201809091024-r
v5.1.0.201808281540-m3
v5.1.0.201809051400-rc1
v5.1.0.201809111528-r
v5.1.1.201809181055-r
v5.1.10.201908230655-r
v5.1.11.201909031202-r
v5.1.12.201910011832-r
v5.1.13.202002110435-r
v5.1.2.201810061102-r
v5.1.3.201810200350-r
v5.1.4.201812251853-r
v5.1.5.201812261915-r
v5.1.6.201903130242-r
v5.1.7.201904200442-r
v5.1.8.201906050907-r
v5.1.9.201908210455-r
v5.2.0.201811281532-m3
v5.2.0.201812061821-r
v5.2.1.201812262042-r
v5.3.0.201901161700-m1
v5.3.0.201901162155-m1
v5.3.0.201903061415-rc1
v5.3.0.201903130848-r
v5.3.1.201904271842-r
v5.3.2.201906051522-r
v5.3.3.201908210735-r
v5.3.4.201908231101-r
v5.3.5.201909031855-r
v5.3.6.201910020505-r
v5.3.7.202002110540-r
v5.4.0.201905081430-m2
v5.4.0.201905221418-m3
v5.4.0.201906121030-r
v5.4.1.201908211225-r
v5.4.2.201908231537-r
v5.4.3.201909031940-r
v5.5.0.201908280940-m3
v5.5.0.201909041048-rc1
v5.5.0.201909110433-r
v5.5.1.201910021850-r
v5.6.0.201911271000-m3
v5.6.0.201912041214-rc1
v5.6.0.201912101111-r
v5.6.1.202002131546-r
v5.7.0.202001151323-m1
v5.7.0.202002241735-m3
v5.7.0.202003090808-r
v5.7.0.202003110725-r
v5.8.0.202005061305-m2
v5.8.0.202006091008-r
v5.8.1.202007141445-r
${ noResults }
52 Commits (c9e507c0b9fe9a91ae65dfa8a3bcaa1f739a5686)
Author | SHA1 | Message | Date |
---|---|---|---|
Shawn O. Pearce | 6ec6169215 |
DHT: Replace TinyProtobuf with Google Protocol Buffers
The standard Google distribution of Protocol Buffers in Java is better maintained than TinyProtobuf, and should be faster for most uses. It does use slightly more memory due to many of our key types being stored as strings in protobuf messages, but this is probably worth the small hit to memory in exchange for better maintained code that is easier to reuse in other applications. Exposing all of our data members to the underlying implementation makes it easier to develop reporting and data mining tools, or to expand out a nested structure like RefData into a flat format in a SQL database table. Since the C++ `protoc` tool is necessary to convert the protobuf script into Java code, the generated files are committed as part of the source repository to make it easier for developers who do not have this tool installed to still build the overall JGit package and make use of it. Reviewers will need to be careful to ensure that any edits made to a *.proto file come in a commit that also updates the generated code to match. CQ: 5135 Change-Id: I53e11e82c186b9cf0d7b368e0276519e6a0b2893 Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Chris Aniszczyk <caniszczyk@gmail.com> |
14 years ago |
Shawn O. Pearce | 7cad0adc7d |
DHT: Remove per-process ChunkCache
Performance testing has indicated the per-process ChunkCache isn't very effective for the DHT storage implementation. If a server is using the DHT storage backend, it is most likely part of a larger cluster where requests are distributed in a round-robin fashion between the member servers. In such a scenario there is insufficient data locality between requests to get a good hit ratio on the per-process ChunkCache. A low hit ratio means the cache is actually hurting performance by eating up memory that could otherwise be used for transient request data, and increasing pressure on the GC when it needs to find free space. Remove all of the ChunkCache code. Installations that want to cache (to reduce database usage) should wrap their Database with a CacheDatabase and use a network based CacheServer. I left the ChunkCache in the original DHT storage commit because I wanted to document in the history of the project that its probably worth *not* having, but leave open a door for someone to revert this change if they find otherwise at a later date. Change-Id: I364d0725c46c5a19f7443642a40c89ba4d3fdd29 Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Chris Aniszczyk <caniszczyk@gmail.com> |
14 years ago |
Shawn O. Pearce | de8946c0c2 |
Store Git on any DHT
jgit.storage.dht is a storage provider implementation for JGit that permits storing the Git repository in a distributed hashtable, NoSQL system, or other database. The actual underlying storage system is undefined, and can be plugged in by implementing 7 small interfaces: * Database * RepositoryIndexTable * RepositoryTable * RefTable * ChunkTable * ObjectIndexTable * WriteBuffer The storage provider interface tries to assume very little about the underlying storage system, and requires only three key features: * key -> value lookup (a hashtable is suitable) * atomic updates on single rows * asynchronous operations (Java's ExecutorService is easy to use) Most NoSQL database products offer all 3 of these features in their clients, and so does any decent network based cache system like the open source memcache product. Relying only on key equality for data retrevial makes it simple for the storage engine to distribute across multiple machines. Traditional SQL systems could also be used with a JDBC based spi implementation. Before submitting this change I have implemented six storage systems for the spi layer: * Apache HBase[1] * Apache Cassandra[2] * Google Bigtable[3] * an in-memory implementation for unit testing * a JDBC implementation for SQL * a generic cache provider that can ride on top of memcache All six systems came in with an spi layer around 1000 lines of code to implement the above 7 interfaces. This is a huge reduction in size compared to prior attempts to implement a new JGit storage layer. As this package shows, a complete JGit storage implementation is more than 17,000 lines of fairly complex code. A simple cache is provided in storage.dht.spi.cache. Implementers can use CacheDatabase to wrap any other type of Database and perform fast reads against a network based cache service, such as the open source memcached[4]. An implementation of CacheService must be provided to glue this spi onto the network cache. [1] https://github.com/spearce/jgit_hbase [2] https://github.com/spearce/jgit_cassandra [3] http://labs.google.com/papers/bigtable.html [4] http://memcached.org/ Change-Id: I0aa4072781f5ccc019ca421c036adff2c40c4295 Signed-off-by: Shawn O. Pearce <spearce@spearce.org> |
14 years ago |