Rust编写的JavaScript引擎,该项目是一个试验性质的项目。
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

465 lines
12 KiB

//! Boa's implementation of ECMAScript's bigint primitive type.
use crate::{builtins::Number, error::JsNativeError, JsResult};
use num_integer::Integer;
use num_traits::{pow::Pow, FromPrimitive, One, ToPrimitive, Zero};
use std::{
fmt::{self, Display},
ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub},
rc::Rc,
};
/// The raw bigint type.
pub type RawBigInt = num_bigint::BigInt;
#[cfg(feature = "deser")]
use serde::{Deserialize, Serialize};
/// JavaScript bigint primitive rust type.
#[cfg_attr(feature = "deser", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct JsBigInt {
inner: Rc<RawBigInt>,
}
impl JsBigInt {
/// Create a new [`JsBigInt`].
#[must_use]
pub fn new<T: Into<Self>>(value: T) -> Self {
value.into()
}
/// Create a [`JsBigInt`] with value `0`.
#[inline]
#[must_use]
pub fn zero() -> Self {
Self {
inner: Rc::new(RawBigInt::zero()),
}
}
/// Check if is zero.
#[inline]
#[must_use]
pub fn is_zero(&self) -> bool {
self.inner.is_zero()
}
/// Create a [`JsBigInt`] with value `1`.
#[inline]
#[must_use]
pub fn one() -> Self {
Self {
inner: Rc::new(RawBigInt::one()),
}
}
/// Check if is one.
#[inline]
#[must_use]
pub fn is_one(&self) -> bool {
self.inner.is_one()
}
/// Convert bigint to string with radix.
#[inline]
#[must_use]
pub fn to_string_radix(&self, radix: u32) -> String {
self.inner.to_str_radix(radix)
}
/// Converts the `BigInt` to a f64 type.
///
/// Returns `f64::INFINITY` if the `BigInt` is too big.
#[inline]
#[must_use]
pub fn to_f64(&self) -> f64 {
self.inner.to_f64().unwrap_or(f64::INFINITY)
}
/// Converts a string to a `BigInt` with the specified radix.
#[inline]
#[must_use]
pub fn from_string_radix(buf: &str, radix: u32) -> Option<Self> {
Some(Self {
inner: Rc::new(RawBigInt::parse_bytes(buf.as_bytes(), radix)?),
})
}
/// This function takes a string and converts it to `BigInt` type.
///
/// More information:
/// - [ECMAScript reference][spec]
///
/// [spec]: https://tc39.es/ecma262/#sec-stringtobigint
#[inline]
#[must_use]
pub fn from_string(mut string: &str) -> Option<Self> {
string = string.trim();
if string.is_empty() {
return Some(Self::zero());
}
let mut radix = 10;
if string.starts_with("0b") || string.starts_with("0B") {
radix = 2;
string = &string[2..];
} else if string.starts_with("0x") || string.starts_with("0X") {
radix = 16;
string = &string[2..];
} else if string.starts_with("0o") || string.starts_with("0O") {
radix = 8;
string = &string[2..];
}
Self::from_string_radix(string, radix)
}
/// Checks for `SameValueZero` equality.
///
/// More information:
/// - [ECMAScript reference][spec]
///
/// [spec]: https://tc39.es/ecma262/#sec-numeric-types-bigint-equal
#[inline]
#[must_use]
pub fn same_value_zero(x: &Self, y: &Self) -> bool {
// Return BigInt::equal(x, y)
Self::equal(x, y)
}
/// Checks for `SameValue` equality.
///
///
/// More information:
/// - [ECMAScript reference][spec]
///
/// [spec]: https://tc39.es/ecma262/#sec-numeric-types-bigint-sameValue
#[inline]
#[must_use]
pub fn same_value(x: &Self, y: &Self) -> bool {
// Return BigInt::equal(x, y)
Self::equal(x, y)
}
/// Checks for mathematical equality.
///
/// The abstract operation `BigInt::equal` takes arguments x (a `BigInt`) and y (a `BigInt`).
/// It returns `true` if x and y have the same mathematical integer value and false otherwise.
///
/// More information:
/// - [ECMAScript reference][spec]
///
/// [spec]: https://tc39.es/ecma262/#sec-numeric-types-bigint-sameValueZero
#[inline]
#[must_use]
pub fn equal(x: &Self, y: &Self) -> bool {
x == y
}
/// Returns `x` to the power `y`.
#[inline]
pub fn pow(x: &Self, y: &Self) -> JsResult<Self> {
let y = y
.inner
.to_biguint()
.ok_or_else(|| JsNativeError::range().with_message("BigInt negative exponent"))?;
let num_bits = (x.inner.bits() as f64
* y.to_f64().expect("Unable to convert from BigUInt to f64"))
.floor()
+ 1f64;
if num_bits > 1_000_000_000f64 {
return Err(JsNativeError::range()
.with_message("Maximum BigInt size exceeded")
.into());
}
Ok(Self::new(x.inner.as_ref().clone().pow(y)))
}
/// Performs the `>>` operation.
#[inline]
pub fn shift_right(x: &Self, y: &Self) -> JsResult<Self> {
match y.inner.to_i32() {
Some(n) if n > 0 => Ok(Self::new(x.inner.as_ref().clone().shr(n as usize))),
Some(n) => Ok(Self::new(x.inner.as_ref().clone().shl(n.unsigned_abs()))),
None => Err(JsNativeError::range()
.with_message("Maximum BigInt size exceeded")
.into()),
}
}
/// Performs the `<<` operation.
#[inline]
pub fn shift_left(x: &Self, y: &Self) -> JsResult<Self> {
match y.inner.to_i32() {
Some(n) if n > 0 => Ok(Self::new(x.inner.as_ref().clone().shl(n as usize))),
Some(n) => Ok(Self::new(x.inner.as_ref().clone().shr(n.unsigned_abs()))),
None => Err(JsNativeError::range()
.with_message("Maximum BigInt size exceeded")
.into()),
}
}
/// Floored integer modulo.
///
/// # Examples
/// ```
/// # use num_integer::Integer;
/// assert_eq!((8).mod_floor(&3), 2);
/// assert_eq!((8).mod_floor(&-3), -1);
/// ```
#[inline]
#[must_use]
pub fn mod_floor(x: &Self, y: &Self) -> Self {
Self::new(x.inner.mod_floor(&y.inner))
}
/// Performs the `+` operation.
#[inline]
#[must_use]
pub fn add(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().add(y.inner.as_ref()))
}
/// Performs the `-` operation.
#[inline]
#[must_use]
pub fn sub(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().sub(y.inner.as_ref()))
}
/// Performs the `*` operation.
#[inline]
#[must_use]
pub fn mul(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().mul(y.inner.as_ref()))
}
/// Performs the `/` operation.
#[inline]
#[must_use]
pub fn div(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().div(y.inner.as_ref()))
}
/// Performs the `%` operation.
#[inline]
#[must_use]
pub fn rem(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().rem(y.inner.as_ref()))
}
/// Performs the `&` operation.
#[inline]
#[must_use]
pub fn bitand(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().bitand(y.inner.as_ref()))
}
/// Performs the `|` operation.
#[inline]
#[must_use]
pub fn bitor(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().bitor(y.inner.as_ref()))
}
/// Performs the `^` operation.
#[inline]
#[must_use]
pub fn bitxor(x: &Self, y: &Self) -> Self {
Self::new(x.inner.as_ref().clone().bitxor(y.inner.as_ref()))
}
/// Performs the unary `-` operation.
#[inline]
#[must_use]
pub fn neg(x: &Self) -> Self {
Self::new(x.as_inner().neg())
}
/// Performs the unary `!` operation.
#[inline]
#[must_use]
pub fn not(x: &Self) -> Self {
Self::new(!x.as_inner())
}
pub(crate) fn as_inner(&self) -> &RawBigInt {
&self.inner
}
}
impl Display for JsBigInt {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(&self.inner, f)
}
}
impl From<RawBigInt> for JsBigInt {
#[inline]
fn from(value: RawBigInt) -> Self {
Self {
inner: Rc::new(value),
}
}
}
impl From<Box<RawBigInt>> for JsBigInt {
#[inline]
fn from(value: Box<RawBigInt>) -> Self {
Self {
inner: value.into(),
}
}
}
impl From<i8> for JsBigInt {
#[inline]
fn from(value: i8) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<u8> for JsBigInt {
#[inline]
fn from(value: u8) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<i16> for JsBigInt {
#[inline]
fn from(value: i16) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<u16> for JsBigInt {
#[inline]
fn from(value: u16) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<i32> for JsBigInt {
#[inline]
fn from(value: i32) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<u32> for JsBigInt {
#[inline]
fn from(value: u32) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<i64> for JsBigInt {
#[inline]
fn from(value: i64) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<u64> for JsBigInt {
#[inline]
fn from(value: u64) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<isize> for JsBigInt {
#[inline]
fn from(value: isize) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
impl From<usize> for JsBigInt {
#[inline]
fn from(value: usize) -> Self {
Self {
inner: Rc::new(RawBigInt::from(value)),
}
}
}
/// The error indicates that the conversion from [`f64`] to [`JsBigInt`] failed.
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct TryFromF64Error;
impl Display for TryFromF64Error {
#[inline]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Could not convert f64 value to a BigInt type")
}
}
impl TryFrom<f64> for JsBigInt {
type Error = TryFromF64Error;
#[inline]
fn try_from(n: f64) -> Result<Self, Self::Error> {
// If the truncated version of the number is not the
// same as the non-truncated version then the floating-point
// number conains a fractional part.
if !Number::equal(n.trunc(), n) {
return Err(TryFromF64Error);
}
RawBigInt::from_f64(n).map_or(Err(TryFromF64Error), |bigint| Ok(Self::new(bigint)))
}
}
impl PartialEq<i32> for JsBigInt {
#[inline]
fn eq(&self, other: &i32) -> bool {
self.inner.as_ref() == &RawBigInt::from(*other)
}
}
impl PartialEq<JsBigInt> for i32 {
#[inline]
fn eq(&self, other: &JsBigInt) -> bool {
&RawBigInt::from(*self) == other.inner.as_ref()
}
}
impl PartialEq<f64> for JsBigInt {
#[inline]
fn eq(&self, other: &f64) -> bool {
other.fract().is_zero()
&& RawBigInt::from_f64(*other).map_or(false, |bigint| self.inner.as_ref() == &bigint)
}
}
impl PartialEq<JsBigInt> for f64 {
#[inline]
fn eq(&self, other: &JsBigInt) -> bool {
self.fract().is_zero()
&& RawBigInt::from_f64(*self).map_or(false, |bigint| other.inner.as_ref() == &bigint)
}
}