分布式调度框架。
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

78 lines
3.5 KiB

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#============================================================================
# System
#============================================================================
# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions
dolphinscheduler.env.path=${DOLPHINSCHEDULER_ENV_PATH}
# user data directory path, self configuration, please make sure the directory exists and have read write permissions
data.basedir.path=${DOLPHINSCHEDULER_DATA_BASEDIR_PATH}
# resource upload startup type : HDFS,S3,NONE
resource.storage.type=${RESOURCE_STORAGE_TYPE}
#============================================================================
# HDFS
#============================================================================
# resource store on HDFS/S3 path, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/dolphinscheduler" is recommended
resource.upload.path=${RESOURCE_UPLOAD_PATH}
# whether kerberos starts
#hadoop.security.authentication.startup.state=false
# java.security.krb5.conf path
#java.security.krb5.conf.path=/opt/krb5.conf
# loginUserFromKeytab user
#login.user.keytab.username=hdfs-mycluster@ESZ.COM
# loginUserFromKeytab path
#login.user.keytab.path=/opt/hdfs.headless.keytab
#resource.view.suffixs
#resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml,properties
# if resource.storage.type=HDFS, the user need to have permission to create directories under the HDFS root path
hdfs.root.user=hdfs
# kerberos expire time
kerberos.expire.time=7
#============================================================================
# S3
#============================================================================
# if resource.storage.type=S3,the value like: s3a://dolphinscheduler ; if resource.storage.type=HDFS, When namenode HA is enabled, you need to copy core-site.xml and hdfs-site.xml to conf dir
fs.defaultFS=${FS_DEFAULT_FS}
# if resource.storage.type=S3,s3 endpoint
fs.s3a.endpoint=${FS_S3A_ENDPOINT}
# if resource.storage.type=S3,s3 access key
fs.s3a.access.key=${FS_S3A_ACCESS_KEY}
# if resource.storage.type=S3,s3 secret key
fs.s3a.secret.key=${FS_S3A_SECRET_KEY}
# if not use hadoop resourcemanager, please keep default value; if resourcemanager HA enable, please type the HA ips ; if resourcemanager is single, make this value empty TODO
yarn.resourcemanager.ha.rm.ids=192.168.xx.xx,192.168.xx.xx
# If resourcemanager HA enable or not use resourcemanager, please keep the default value; If resourcemanager is single, you only need to replace ark1 to actual resourcemanager hostname.
yarn.application.status.address=http://ark1:8088/ws/v1/cluster/apps/%s