+
+
+部署文档
+软件要求
+
+项目编译
+
+
+mvn -U clean package assembly:assembly -Dmaven.test.skip=true
+
+
+正常编译完后,会在当前目录生成 target/escheduler-{version}-SNAPSHOT/
+ bin
+ conf
+ lib
+ script
+ sql
+
+数据库初始化
+
+mysql -h {host} -u {user} -p{password}
+mysql> CREATE DATABASE escheduler DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
+mysql> GRANT ALL PRIVILEGES ON escheduler.* TO '{user}'@'%' IDENTIFIED BY '{password}';
+mysql> GRANT ALL PRIVILEGES ON escheduler.* TO '{user}'@'localhost' IDENTIFIED BY '{password}';
+mysql> flush privileges;
+
+说明:在target/escheduler-{version}-SNAPSHOT/sql/有两个sql创建表文件:escheduler.sql和quartz.sql
+执行:
+mysql -h {host} -u {user} -p{password} -D {db} < escheduler.sql
+mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql
+
创建部署用户
+因为easyscheduler worker都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
+部署账号
+vi /etc/sudoers
+
+# 部署用户是 escheduler 账号
+escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
+
+# 并且需要注释掉 Default requiretty 一行
+#Default requiretty
+
配置文件
+说明:配置文件位于 target/escheduler-{version}-SNAPSHOT/conf 下面
+escheduler-alert
+配置邮件告警信息
+
+#以qq邮箱为例,如果是别的邮箱,请更改对应配置
+#alert type is EMAIL/SMS
+alert.type=EMAIL
+
+# mail server configuration
+mail.protocol=SMTP
+mail.server.host=smtp.exmail.qq.com
+mail.server.port=25
+mail.sender=xxxxxx@qq.com
+mail.passwd=xxxxxxx
+
+# xls file path, need manually create it before use if not exist
+xls.file.path=/opt/xls
+
配置告警数据源信息
+
+- alert/data_source.properties
+
+#注意:请替换${xxx}里的内容
+
+# common configuration
+spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
+spring.datasource.driver-class-name=com.mysql.jdbc.Driver
+spring.datasource.url=jdbc:mysql://${ip}:3306/escheduler?characterEncoding=UTF-8
+spring.datasource.username=${username}
+spring.datasource.password=${password}
+
+# supplement configuration
+spring.datasource.initialSize=5
+# min connection number
+spring.datasource.minIdle=5
+# max connection number
+spring.datasource.maxActive=20
+
+# max wait time for get connection
+spring.datasource.maxWait=60000
+
+# idle connections closed,unit milliseconds
+spring.datasource.timeBetweenEvictionRunsMillis=60000
+
+# connection minimum survival time,unit milliseconds
+spring.datasource.minEvictableIdleTimeMillis=300000
+spring.datasource.validationQuery=SELECT 1
+spring.datasource.validationQueryTimeout=3
+spring.datasource.testWhileIdle=true
+spring.datasource.testOnBorrow=true
+spring.datasource.testOnReturn=false
+spring.datasource.defaultAutoCommit=true
+
+# open PSCache,set PSCache size
+spring.datasource.poolPreparedStatements=false
+spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
+
日志配置文件
+
+<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
+<configuration scan="true" scanPeriod="120 seconds"> <!--debug="true" -->
+ <property name="log.base" value="logs" />
+ <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ </appender>
+
+ <appender name="ALERTLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
+ <file>${log.base}/escheduler-alert.log</file>
+ <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
+ <fileNamePattern>${log.base}/escheduler-alert.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
+ <maxHistory>20</maxHistory>
+ <maxFileSize>64MB</maxFileSize>
+ </rollingPolicy>
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ </appender>
+
+ <root level="INFO">
+ <appender-ref ref="ALERTLOGFILE"/>
+ </root>
+</configuration>
+
escheduler-common
+通用配置文件配置,队列选择及地址配置,通用文件目录配置。
+
+- common/common.properties
+
+#task queue implementation, can choose "redis" or "zookeeper", default "zookeeper"
+escheduler.queue.impl=zookeeper
+
+#if escheduler.queue.impl=redis, you need to configuration relevant information with redis. redis configuration start
+spring.redis.host=${redis_ip}
+spring.redis.port=6379
+spring.redis.maxIdle=1000
+spring.redis.maxTotal=10000
+#redis configuration end
+
+# user data directory path, self configuration, please make sure the directory exists and have read write permissions
+data.basedir.path=/xxx/xxx
+
+# directory path for user data download. self configuration, please make sure the directory exists and have read write permissions
+data.download.basedir.path=/xxx/xxx
+
+# process execute directory. self configuration, please make sure the directory exists and have read write permissions
+process.exec.basepath=/xxx/xxx
+
+# data base dir, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/escheduler" is recommended
+data.store2hdfs.basepath=/escheduler
+
+# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions
+escheduler.env.path=/xxx/xxx/.escheduler_env.sh
+escheduler.env.py=/xxx/xxx/escheduler_env.py
+
+#resource.view.suffixs
+resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml
+
+# is development state? default "false"
+development.state=false
+
SHELL任务 环境变量配置
+.escheduler_env.sh
+#self configuration, please make sure the directory exists and have read write permissions
+export HADOOP_HOME=/opt/soft/hadoop
+export HADOOP_CONF_DIR=/opt/soft/hadoop/etc/hadoop
+export SPARK_HOME1=/opt/soft/spark1
+export SPARK_HOME2=/opt/soft/spark2
+export PYTHON_HOME=/opt/soft/python
+export JAVA_HOME=/opt/soft/java
+export HIVE_HOME=/opt/soft/hive
+
+export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
+
+Python任务 环境变量配置
+escheduler_env.py
+#self configuration, please make sure the directory exists and have read write execute permissions
+
+import os
+
+HADOOP_HOME="/opt/soft/hadoop"
+PYTHON_HOME="/opt/soft/python"
+JAVA_HOME="/opt/soft/java"
+PATH=os.environ['PATH']
+PATH="%s/bin:%s/bin:%s/bin:%s"%(HADOOP_HOME,JAVA_HOME,PYTHON_HOME,PATH)
+
+os.putenv('PATH','%s'%PATH)
+
hadoop 配置文件
+
+- common/hadoop/hadoop.properties
+
+#please replace the content in ${xxx}
+# ha or single namenode
+fs.defaultFS=hdfs://${cluster_ipOrName}:8020
+
+#resourcemanager ha note this need ips , eg. 192.168.220.188,192.168.220.189
+yarn.resourcemanager.ha.rm.ids=${ip1},${ip2}
+
+# reousrcemanager path
+yarn.application.status.address=http://${ip1}:8088/ws/v1/cluster/apps/%s
+
定时器配置文件
+
+#please replace the content in ${xxx}
+#============================================================================
+# Configure Main Scheduler Properties
+#============================================================================
+org.quartz.scheduler.instanceName = EasyScheduler
+org.quartz.scheduler.instanceId = AUTO
+org.quartz.scheduler.makeSchedulerThreadDaemon = true
+org.quartz.jobStore.useProperties = false
+
+#============================================================================
+# Configure ThreadPool
+#============================================================================
+
+org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
+org.quartz.threadPool.makeThreadsDaemons = true
+org.quartz.threadPool.threadCount = 25
+org.quartz.threadPool.threadPriority = 5
+
+#============================================================================
+# Configure JobStore
+#============================================================================
+
+org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX
+org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.StdJDBCDelegate
+org.quartz.jobStore.tablePrefix = QRTZ_
+org.quartz.jobStore.isClustered = true
+org.quartz.jobStore.misfireThreshold = 60000
+org.quartz.jobStore.clusterCheckinInterval = 5000
+org.quartz.jobStore.dataSource = myDs
+
+#============================================================================
+# Configure Datasources
+#============================================================================
+
+org.quartz.dataSource.myDs.driver = com.mysql.jdbc.Driver
+org.quartz.dataSource.myDs.URL = jdbc:mysql://${ip}:3306/escheduler?characterEncoding=utf8&useSSL=false
+org.quartz.dataSource.myDs.user = ${username}
+org.quartz.dataSource.myDs.password = ${password}
+org.quartz.dataSource.myDs.maxConnections = 10
+org.quartz.dataSource.myDs.validationQuery = select 1
+
zookeeper 配置文件
+
+#zookeeper cluster. eg. 192.168.220.188:2181,192.168.220.189:2181,192.168.220.190:2181
+zookeeper.quorum=${ip1}:2181,${ip2}:2181,${ip3}:2181
+
+#zookeeper server dirctory
+zookeeper.escheduler.master=/escheduler/masters
+zookeeper.escheduler.worker=/escheduler/workers
+
+#zookeeper lock dirctory
+zookeeper.escheduler.lock.master=/escheduler/lock/master
+zookeeper.escheduler.lock.worker=/escheduler/lock/worker
+
+#escheduler root directory
+zookeeper.escheduler.root=/escheduler
+
+#escheduler failover directory
+zookeeper.escheduler.lock.master.failover=/escheduler/lock/failover/master
+zookeeper.escheduler.lock.worker.failover=/escheduler/lock/failover/worker
+
+#escheduler failover directory
+zookeeper.session.timeout=300
+zookeeper.connection.timeout=300
+zookeeper.retry.sleep=1000
+zookeeper.retry.maxtime=5
+
escheduler-dao
+dao数据源配置
+
+- dao/data_source.properties
+
+#please replace the content in ${xxx}
+
+# base spring data source configuration
+spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
+spring.datasource.driver-class-name=com.mysql.jdbc.Driver
+spring.datasource.url=jdbc:mysql://${ip}:3306/escheduler?characterEncoding=UTF-8
+spring.datasource.username=${username}
+spring.datasource.password=${password}
+
+# connection configuration
+spring.datasource.initialSize=5
+spring.datasource.minIdle=5
+spring.datasource.maxActive=20
+
+# max seconds wait connection timeout
+spring.datasource.maxWait=60000
+
+# milliseconds for check to close free connections
+spring.datasource.timeBetweenEvictionRunsMillis=60000
+
+# connection minimum survival time(milliseconds)
+spring.datasource.minEvictableIdleTimeMillis=300000
+spring.datasource.validationQuery=SELECT 1
+spring.datasource.validationQueryTimeout=3
+spring.datasource.testWhileIdle=true
+spring.datasource.testOnBorrow=true
+spring.datasource.testOnReturn=false
+spring.datasource.defaultAutoCommit=true
+
+# open PSCache, specify count PSCache for every connection
+spring.datasource.poolPreparedStatements=true
+spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
+
+
+# data quality analysis is not currently in use. please ignore the following configuration
+# task record flag
+task.record.flag=false
+task.record.datasource.url=jdbc:mysql://${ip}:3306/etl?characterEncoding=UTF-8
+task.record.datasource.username=etl
+task.record.datasource.password=xxxxx
+
escheduler-server
+master配置文件
+
+# master execute thread num
+master.exec.threads=100
+
+# master execute task number in parallel
+master.exec.task.number=20
+
+# master heartbeat interval
+master.heartbeat.interval=8
+
+# master commit task retry times
+master.task.commit.retryTimes=5
+
+# master commit task interval
+master.task.commit.interval=100
+
+
+# only less than cpu avg load, master server can work. default value : the number of cpu cores * 2
+master.max.cpuload.avg=10
+
+# only larger than reserved memory, master server can work. default value : physical memory * 1/10, unit is G.
+master.reserved.memory=1
+
master日志文件
+注意:对MASTERLOGFILE,自定义了MasterLogFilter
+
+<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
+<configuration scan="true" scanPeriod="120 seconds"> <!--debug="true" -->
+ <property name="log.base" value="logs" />
+ <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ </appender>
+
+ <appender name="MASTERLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
+ <file>${log.base}/escheduler-master.log</file>
+ <filter class="cn.escheduler.server.master.log.MasterLogFilter">
+ <level>INFO</level>
+ </filter>
+ <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
+ <fileNamePattern>${log.base}/escheduler-master.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
+ <maxHistory>20</maxHistory>
+ <maxFileSize>200MB</maxFileSize>
+ </rollingPolicy>
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ </appender>
+
+ <root level="INFO">
+ <appender-ref ref="MASTERLOGFILE"/>
+ </root>
+</configuration>
+
worker配置文件
+
+# worker execute thread num
+worker.exec.threads=100
+
+# worker heartbeat interval
+worker.heartbeat.interval=8
+
+# submit the number of tasks at a time
+worker.fetch.task.num = 10
+
+# only less than cpu avg load, worker server can work. default value : the number of cpu cores * 2
+worker.max.cpuload.avg=10
+
+# only larger than reserved memory, worker server can work. default value : physical memory * 1/6, unit is G.
+worker.reserved.memory=1
+
worker日志文件
+注意:对WORKERLOGFILE,自定义了WorkerLogFilter
+对于 TASKLOGFILE , 自定义了TaskLogAppender和TaskLogFilter
+
+<!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
+<configuration scan="true" scanPeriod="120 seconds">
+ <property name="log.base" value="logs"/>
+ <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ </appender>
+ <appender name="TASKLOGFILE" class="cn.escheduler.server.worker.log.TaskLogAppender">
+ <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
+ <level>INFO</level>
+ </filter>
+ <filter class="cn.escheduler.server.worker.log.TaskLogFilter"></filter>
+ <file>${log.base}/{processDefinitionId}/{processInstanceId}/{taskInstanceId}.log</file>
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ <append>true</append>
+ </appender>
+
+ <appender name="WORKERLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
+ <file>${log.base}/escheduler-worker.log</file>
+ <filter class="cn.escheduler.server.worker.log.WorkerLogFilter">
+ <level>INFO</level>
+ </filter>
+
+ <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
+ <fileNamePattern>${log.base}/escheduler-worker.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
+ <maxHistory>20</maxHistory>
+ <maxFileSize>200MB</maxFileSize>
+ </rollingPolicy>
+
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+
+ </appender>
+
+
+ <root level="INFO">
+ <appender-ref ref="TASKLOGFILE"/>
+ <appender-ref ref="WORKERLOGFILE"/>
+ </root>
+</configuration>
+
escheduler-web
+web配置文件
+
+- application.properties
+
+# server port
+server.port=12345
+
+# session config
+server.session.timeout=7200
+
+
+server.context-path=/escheduler/
+
+# file size limit for upload
+spring.http.multipart.max-file-size=1024MB
+spring.http.multipart.max-request-size=1024MB
+
+#post content
+server.max-http-post-size=5000000
+
web日志文件
+
+ <!-- Logback configuration. See http://logback.qos.ch/manual/index.html -->
+ <configuration scan="true" scanPeriod="120 seconds">
+ <logger name="org.apache.zookeeper" level="WARN"/>
+ <logger name="org.apache.hbase" level="WARN"/>
+ <logger name="org.apache.hadoop" level="WARN"/>
+
+ <property name="log.base" value="logs" />
+
+ <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+ </appender>
+
+ <appender name="WEBSERVERLOGFILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
+ <!-- Log level filter -->
+ <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
+ <level>INFO</level>
+ </filter>
+ <file>${log.base}/escheduler-web-server.log</file>
+ <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
+ <fileNamePattern>${log.base}/escheduler-web-server.%d{yyyy-MM-dd_HH}.%i.log</fileNamePattern>
+ <maxHistory>20</maxHistory>
+ <maxFileSize>64MB</maxFileSize>
+ </rollingPolicy>
+
+ <encoder>
+ <pattern>
+ [%level] %date{yyyy-MM-dd HH:mm:ss.SSS} %logger{96}:[%line] - %msg%n
+ </pattern>
+ <charset>UTF-8</charset>
+ </encoder>
+
+ </appender>
+
+ <root level="INFO">
+ <appender-ref ref="WEBSERVERLOGFILE" />
+ </root>
+ </configuration>
+
启动停止命令
+
+sh ./bin/arklifter-daemon.sh start master-server
+sh ./bin/arklifter-daemon.sh stop master-server
+
+sh ./bin/arklifter-daemon.sh start worker-server
+sh ./bin/arklifter-daemon.sh stop worker-server
+
+sh ./bin/arklifter-daemon.sh start web-server
+sh ./bin/arklifter-daemon.sh stop web-server
+
+一键启停脚本
+
+部署用户配置
+
+创建部署用户
+target/escheduler-{version}-SNAPSHOT/script/init_deploy_user.sh
+
+配置
+因为escheduler worker 都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的
+
+
+
+
+ vi /etc/sudoers
+
+ # 部署用户是 escheduler 账号
+ escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
+
+ # 并且需要注释掉 Default requiretty 一行
+ #Default requiretty
+
+ target/escheduler-{version}-SNAPSHOT/script/init_hdfs.sh
+
+ # 项目所在目录
+ BASE_PATH=/opt/soft/program
+ # 部署的机器
+ IPS=ark0,ark1,ark2,ark3,ark4
+
+运行配置文件 run_config
+ # master服务所在机器,>=1个
+ MASTERS=ark0,ark1
+ # worker服务所在机器,>=1个
+ WORKERS=ark2,ark3,ark4
+ # alert服务所在机器,1个
+ ALERTS=ark3
+ # web服务所在机器,1个
+ WEBSERVER=ark1
+
+初始化安装目录
+ target/escheduler-{version}-SNAPSHOT/script/init_install_path.sh
+
+将 target/escheduler-{version}-SNAPSHOT 下配置好的conf文件夹和编译好的escheduler-{version}-SNAPSHOT.tar.gz 复制到 主机器的 BASE_PATH 目录下
+ 说明:主机器需要能免密ssh登录到其它机器上
+
+启动所有服务
+
+
+sh ./deploy/start_all.sh
+
+
+sh ./deploy/stop_all.sh
+
+监控服务
+monitor_server.py 脚本是监听,master和worker服务挂掉重启的脚本
+注意:在全部服务都启动之后启动
+nohup python -u monitor_server.py > nohup.out 2>&1 &
+日志查看
+日志统一存放于指定文件夹内
+ logs/
+ ├── escheduler-alert-server.log
+ ├── escheduler-master-server.log
+ |—— escheduler-worker-server.log
+ |—— escheduler-web-server.log
+ |—— escheduler-logger-server.log
+
+
+
+