Browse Source

[Feature][MLops] Add MLflow Projects (custom project) component (#10175)

* Add MLflow Projects (custom project) component

* fix something

* update document

* update document

* Supplementary test cases
3.1.0-release
JieguangZhou 3 years ago committed by GitHub
parent
commit
54ab2651bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 32
      docs/docs/en/guide/task/mlflow.md
  2. 32
      docs/docs/zh/guide/task/mlflow.md
  3. BIN
      docs/img/tasks/demo/mlflow-custom-project-template.png
  4. BIN
      docs/img/tasks/demo/mlflow-custom-project.png
  5. 9
      dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/main/java/org/apache/dolphinscheduler/plugin/task/mlflow/MlflowConstants.java
  6. 27
      dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/main/java/org/apache/dolphinscheduler/plugin/task/mlflow/MlflowParameters.java
  7. 10
      dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/main/java/org/apache/dolphinscheduler/plugin/task/mlflow/MlflowTask.java
  8. 85
      dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/test/java/org/apache/dolphinler/plugin/task/mlflow/MlflowTaskTest.java
  9. 4
      dolphinscheduler-ui/src/locales/modules/en_US.ts
  10. 4
      dolphinscheduler-ui/src/locales/modules/zh_CN.ts
  11. 77
      dolphinscheduler-ui/src/views/projects/task/components/node/fields/use-mlflow-projects.ts
  12. 2
      dolphinscheduler-ui/src/views/projects/task/components/node/format-data.ts
  13. 6
      dolphinscheduler-ui/src/views/projects/task/components/node/tasks/use-mlflow.ts
  14. 2
      dolphinscheduler-ui/src/views/projects/task/components/node/types.ts

32
docs/docs/en/guide/task/mlflow.md

@ -13,10 +13,10 @@ MLflow task plugin used to execute MLflow tasks,Currently contains Mlflow Proj
The Mlflow plugin currently supports and will support the following:
- [ ] MLflow Projects
- [x] BasicAlgorithm: contains lr, svm, lightgbm, xgboost
- [x] MLflow Projects
- [x] BasicAlgorithm: contains LogisticRegression, svm, lightgbm, xgboost
- [x] AutoML: AutoML tool,contains autosklean, flaml
- [ ] Custom projects: Support for running your own MLflow projects
- [x] Custom projects: Support for running your own MLflow projects
- [ ] MLflow Models
- [x] MLFLOW: Use `MLflow models serve` to deploy a model service
- [x] Docker: Run the container after packaging the docker image
@ -65,9 +65,7 @@ First, introduce some general parameters of DolphinScheduler
**Task Parameter**
- **mlflow server tracking uri** :MLflow server uri, default http://localhost:5000.
- **job type** : The type of task to run, currently including the underlying algorithm and AutoML. (User-defined
MLFlow project task execution will be supported in the near future)
- **experiment name** :The experiment in which the task is running, if none, is created.
- **experiment name** :Create the experiment where the task is running, if the experiment does not exist. If the name is empty, it is set to ` Default `, the same as MLflow.
- **register model** :Register the model or not. If register is selected, the following parameters are expanded.
- **model name** : The registered model name is added to the original model version and registered as
Production.
@ -95,9 +93,7 @@ First, introduce some general parameters of DolphinScheduler
**Task Parameter**
- **mlflow server tracking uri** :MLflow server uri, default http://localhost:5000.
- **job type** : The type of task to run, currently including the underlying algorithm and AutoML. (User-defined
MLFlow project task execution will be supported in the near future)
- **experiment name** :The experiment in which the task is running, if none, is created.
- **experiment name** :Create the experiment where the task is running, if the experiment does not exist. If the name is empty, it is set to ` Default `, the same as MLflow.
- **register model** :Register the model or not. If register is selected, the following parameters are expanded.
- **model name** : The registered model name is added to the original model version and registered as
Production.
@ -114,6 +110,24 @@ First, introduce some general parameters of DolphinScheduler
and [flaml](https://github.com/microsoft/FLAML)
#### Custom projects
![mlflow-custom-project-template.png](/img/tasks/demo/mlflow-custom-project-template.png)
**Task Parameter**
- **mlflow server tracking uri** :MLflow server uri, default http://localhost:5000.
- **experiment name** :Create the experiment where the task is running, if the experiment does not exist. If the name is empty, it is set to ` Default `, the same as MLflow.
- **parameters** : `--param-list` in `mlflow run`. For example `-P learning_rate=0.2 -P colsample_bytree=0.8 -P subsample=0.9`
- **Repository** : Repository url of MLflow Project,Support git address and directory on worker. If it's in a subdirectory,We add `#` to support this (same as `mlflow run`) , for example `https://github.com/mlflow/mlflow#examples/xgboost/xgboost_native`
- **Project Version** : Version of the project,default master
You can now use this feature to run all mlFlow projects on Github (For example [MLflow examples](https://github.com/mlflow/mlflow/tree/master/examples) )了。You can also create your own machine learning library to reuse your work, and then use DolphinScheduler to use your library with one click.
The actual interface is as follows
![mlflow-custom-project.png](/img/tasks/demo/mlflow-custom-project.png)
### MLflow Models
#### MLFLOW

32
docs/docs/zh/guide/task/mlflow.md

@ -12,10 +12,10 @@ MLflow 组件用于执行 MLflow 任务,目前包含Mlflow Projects, 和MLflow
目前 Mlflow 组件支持的和即将支持的内容如下中:
- [ ] MLflow Projects
- [x] BasicAlgorithm: 基础算法,包含lr, svm, lightgbm, xgboost。
- [x] MLflow Projects
- [x] BasicAlgorithm: 基础算法,包含LogisticRegression, svm, lightgbm, xgboost。
- [x] AutoML: AutoML工具,包含autosklean, flaml。
- [ ] Custom projects: 支持运行自己的MLflow Projects项目
- [x] Custom projects: 支持运行自己的MLflow Projects项目
- [ ] MLflow Models
- [x] MLFLOW: 直接使用 `MLflow models serve` 部署模型
- [x] Docker: 打包 DOCKER 镜像后部署模型
@ -57,13 +57,12 @@ MLflow 组件用于执行 MLflow 任务,目前包含Mlflow Projects, 和MLflow
**任务参数**
- **mlflow server tracking uri** :MLflow server 的连接, 默认 http://localhost:5000。
- **任务类型** : 运行的任务类型,目前包括基础算法与AutoML, 后续将会支持用户自定义的MLflow Project。
- **实验名称** :任务运行时所在的实验,若无则创建。
- **实验名称** :任务运行时所在的实验,若实验不存在,则创建。若实验名称为空,则设置为`Default`, 与 MLflow 一样。
- **注册模型** :是否注册模型,若选择注册,则会展开以下参数。
- **注册的模型名称** : 注册的模型名称,会在原来的基础上加上一个模型版本,并注册为Production。
- **数据路径** : 文件/文件夹的绝对路径, 若文件需以.csv结尾(自动切分训练集与测试集), 文件夹需包含train.csv和test.csv(建议方式,用户应自行构建测试集用于模型评估)。
详细的参数列表如下:
- [lr](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression)
- [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression)
- [SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC)
- [lightgbm](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier)
- [xgboost](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)
@ -77,8 +76,7 @@ MLflow 组件用于执行 MLflow 任务,目前包含Mlflow Projects, 和MLflow
**任务参数**
- **mlflow server tracking uri** :MLflow server 的连接, 默认 http://localhost:5000。
- **任务类型** : 运行的任务类型,目前包括基础算法与AutoML, 后续将会支持用户自定义的MLflow Project。
- **实验名称** :任务运行时所在的实验,若无则创建。
- **实验名称** :任务运行时所在的实验,若实验不存在,则创建。若实验名称为空,则设置为`Default`, 与 MLflow 一样。
- **注册模型** :是否注册模型,若选择注册,则会展开以下参数。
- **注册的模型名称** : 注册的模型名称,会在原来的基础上加上一个模型版本,并注册为Production。
- **数据路径** : 文件/文件夹的绝对路径, 若文件需以.csv结尾(自动切分训练集与测试集), 文件夹需包含train.csv和test.csv(建议方式,用户应自行构建测试集用于模型评估)。
@ -88,6 +86,24 @@ MLflow 组件用于执行 MLflow 任务,目前包含Mlflow Projects, 和MLflow
- **AutoML工具** : 使用的AutoML工具,目前支持 [autosklearn](https://github.com/automl/auto-sklearn)
, [flaml](https://github.com/microsoft/FLAML)
#### Custom projects
![mlflow-custom-project-template.png](/img/tasks/demo/mlflow-custom-project-template.png)
**任务参数**
- **mlflow server tracking uri** :MLflow server 的连接, 默认 http://localhost:5000。
- **实验名称** :任务运行时所在的实验,若实验不存在,则创建。若实验名称为空,则设置为`Default`, 与 MLflow 一样。
- **参数** : `mlflow run`中的 --param-list 如 `-P learning_rate=0.2 -P colsample_bytree=0.8 -P subsample=0.9`
- **运行仓库** : MLflow Project的仓库地址,可以为github地址,或者worker上的目录, 如Mlflow project位于子目录,可以添加 `#` 隔开, 如 `https://github.com/mlflow/mlflow#examples/xgboost/xgboost_native`
- **项目版本** : 对应项目中git版本管理中的版本,默认 master
现在你可以使用这个功能来运行github上所有的MLflow Projects (如 [MLflow examples](https://github.com/mlflow/mlflow/tree/master/examples) )了。你也可以创建自己的机器学习库,用来复用你的研究成果,以后你就可以使用DolphinScheduler来一键操作使用你的算法库。
实际运行界面如下
![mlflow-custom-project.png](/img/tasks/demo/mlflow-custom-project.png)
### MLflow Models

BIN
docs/img/tasks/demo/mlflow-custom-project-template.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

BIN
docs/img/tasks/demo/mlflow-custom-project.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

9
dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/main/java/org/apache/dolphinscheduler/plugin/task/mlflow/MlflowConstants.java

@ -26,6 +26,8 @@ public class MlflowConstants {
public static final String JOB_TYPE_BASIC_ALGORITHM = "BasicAlgorithm";
public static final String JOB_TYPE_CUSTOM_PROJECT = "CustomProject";
public static final String PRESET_REPOSITORY = "https://github.com/apache/dolphinscheduler-mlflow";
public static final String PRESET_REPOSITORY_VERSION = "main";
@ -75,9 +77,14 @@ public class MlflowConstants {
"--experiment-name=\"%s\" " +
"--version=main ";
public static final String MLFLOW_RUN_CUSTOM_PROJECT = "mlflow run $repo " +
"%s " +
"--experiment-name=\"%s\" " +
"--version=\"%s\" ";
public static final String MLFLOW_MODELS_SERVE = "mlflow models serve -m %s --port %s -h 0.0.0.0";
public static final String MLFLOW_BUILD_DOCKER = "mlflow models build-docker -m %s -n %s --enable-mlserver";
public static final String MLFLOW_BUILD_DOCKER = "mlflow models build-docker -m %s -n %s --enable-mlserver";
public static final String DOCKER_RREMOVE_CONTAINER = "docker rm -f %s";

27
dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/main/java/org/apache/dolphinscheduler/plugin/task/mlflow/MlflowParameters.java

@ -31,6 +31,13 @@ public class MlflowParameters extends AbstractParameters {
private String mlflowJobType = "";
/**
* CustomProject parameters
*/
private String mlflowProjectRepository;
private String mlflowProjectVersion = "master";
/**
* AutoML parameters
*/
@ -53,7 +60,7 @@ public class MlflowParameters extends AbstractParameters {
private String mlflowTaskType = "";
private String experimentName;
private String experimentName = "Default";
private String modelName = "";
@ -145,6 +152,22 @@ public class MlflowParameters extends AbstractParameters {
this.automlTool = automlTool;
}
public String getMlflowProjectRepository() {
return mlflowProjectRepository;
}
public void setMlflowProjectRepository(String mlflowProjectRepository) {
this.mlflowProjectRepository = mlflowProjectRepository;
}
public String getMlflowProjectVersion() {
return mlflowProjectVersion;
}
public void setMlflowProjectVersion(String mlflowProjectVersion) {
this.mlflowProjectVersion = mlflowProjectVersion;
}
public String getAutomlTool() {
return automlTool;
}
@ -232,7 +255,7 @@ public class MlflowParameters extends AbstractParameters {
return scriptPath;
}
public String getModelKeyName(String tag) throws IllegalArgumentException{
public String getModelKeyName(String tag) throws IllegalArgumentException {
String imageName;
if (deployModelKey.startsWith("runs:")) {
imageName = deployModelKey.replace("runs:/", "");

10
dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/main/java/org/apache/dolphinscheduler/plugin/task/mlflow/MlflowTask.java

@ -141,8 +141,14 @@ public class MlflowTask extends AbstractTaskExecutor {
runCommand = String.format(runCommand, mlflowParameters.getAutomlTool(), mlflowParameters.getParams(), mlflowParameters.getModelName(), mlflowParameters.getExperimentName());
} else {
runCommand = String.format("Cant not Support %s", mlflowParameters.getMlflowTaskType());
} else if (mlflowParameters.getMlflowJobType().equals(MlflowConstants.JOB_TYPE_CUSTOM_PROJECT)) {
args.add(String.format(MlflowConstants.SET_REPOSITORY, mlflowParameters.getMlflowProjectRepository()));
runCommand = MlflowConstants.MLFLOW_RUN_CUSTOM_PROJECT;
runCommand = String.format(runCommand, mlflowParameters.getParams(), mlflowParameters.getExperimentName(), mlflowParameters.getMlflowProjectVersion());
}
else {
runCommand = String.format("Cant not Support %s", mlflowParameters.getMlflowJobType());
}
args.add(runCommand);

85
dolphinscheduler-task-plugin/dolphinscheduler-task-mlflow/src/test/java/org/apache/dolphinler/plugin/task/mlflow/MlflowTaskTest.java

@ -78,28 +78,73 @@ public class MlflowTaskTest {
}
@Test
public void testInitBasicAlgorithmTask() throws Exception {
public void testInitBasicAlgorithmTask() {
MlflowTask mlflowTask = initTask(createBasicAlgorithmParameters());
String command = mlflowTask.buildCommand();
Assert.assertEquals(mlflowTask.buildCommand(),
"export MLFLOW_TRACKING_URI=http://127.0.0.1:5000\n" +
"data_path=/data/iris.csv\n" +
"repo=https://github.com/apache/dolphinscheduler-mlflow#Project-BasicAlgorithm\n" +
"mlflow run $repo " +
"-P algorithm=xgboost " +
"-P data_path=$data_path " +
"-P params=\"n_estimators=100\" " +
"-P search_params=\"\" " +
"-P model_name=\"BasicAlgorithm\" " +
"--experiment-name=\"BasicAlgorithm\" " +
"--version=main ");
}
@Test
public void testInitAutoMLTask() throws Exception {
public void testInitAutoMLTask() {
MlflowTask mlflowTask = initTask(createAutoMLParameters());
String command = mlflowTask.buildCommand();
Assert.assertEquals(mlflowTask.buildCommand(),
"export MLFLOW_TRACKING_URI=http://127.0.0.1:5000\n" +
"data_path=/data/iris.csv\n" +
"repo=https://github.com/apache/dolphinscheduler-mlflow#Project-AutoML\n" +
"mlflow run $repo " +
"-P tool=autosklearn " +
"-P data_path=$data_path " +
"-P params=\"time_left_for_this_task=30\" " +
"-P model_name=\"AutoML\" " +
"--experiment-name=\"AutoML\" " +
"--version=main ");
}
@Test
public void testInitCustomProjectTask() {
MlflowTask mlflowTask = initTask(createCustomProjectParameters());
Assert.assertEquals(mlflowTask.buildCommand(),
"export MLFLOW_TRACKING_URI=http://127.0.0.1:5000\n" +
"repo=https://github.com/mlflow/mlflow#examples/xgboost/xgboost_native\n" +
"mlflow run $repo " +
"-P learning_rate=0.2 " +
"-P colsample_bytree=0.8 " +
"-P subsample=0.9 " +
"--experiment-name=\"custom_project\" " +
"--version=\"master\" ");
}
@Test
public void testModelsDeployMlflow() throws Exception {
public void testModelsDeployMlflow() {
MlflowTask mlflowTask = initTask(createModelDeplyMlflowParameters());
String command = mlflowTask.buildCommand();
Assert.assertEquals(mlflowTask.buildCommand(),
"export MLFLOW_TRACKING_URI=http://127.0.0.1:5000\n" +
"mlflow models serve -m runs:/a272ec279fc34a8995121ae04281585f/model " +
"--port 7000 " +
"-h 0.0.0.0");
}
@Test
public void testModelsDeployDocker() throws Exception {
MlflowTask mlflowTask = initTask(createModelDeplyDockerParameters());
String command = mlflowTask.buildCommand();
Assert.assertEquals(mlflowTask.buildCommand(),
"export MLFLOW_TRACKING_URI=http://127.0.0.1:5000\n" +
"mlflow models build-docker -m runs:/a272ec279fc34a8995121ae04281585f/model " +
"-n mlflow/a272ec279fc34a8995121ae04281585f:model " +
"--enable-mlserver\n" +
"docker rm -f mlflow-a272ec279fc34a8995121ae04281585f-model\n" +
"docker run --name=mlflow-a272ec279fc34a8995121ae04281585f-model " +
"-p=7000:8080 mlflow/a272ec279fc34a8995121ae04281585f:model");
}
private MlflowTask initTask(MlflowParameters mlflowParameters) {
@ -116,8 +161,10 @@ public class MlflowTaskTest {
mlflowParameters.setMlflowTaskType(MlflowConstants.MLFLOW_TASK_TYPE_PROJECTS);
mlflowParameters.setMlflowJobType(MlflowConstants.JOB_TYPE_BASIC_ALGORITHM);
mlflowParameters.setAlgorithm("xgboost");
mlflowParameters.setDataPaths("xxxxxxxxxx");
mlflowParameters.setExperimentNames("asbbb");
mlflowParameters.setDataPaths("/data/iris.csv");
mlflowParameters.setParams("n_estimators=100");
mlflowParameters.setExperimentNames("BasicAlgorithm");
mlflowParameters.setModelNames("BasicAlgorithm");
mlflowParameters.setMlflowTrackingUris("http://127.0.0.1:5000");
return mlflowParameters;
}
@ -128,13 +175,25 @@ public class MlflowTaskTest {
mlflowParameters.setMlflowJobType(MlflowConstants.JOB_TYPE_AUTOML);
mlflowParameters.setAutomlTool("autosklearn");
mlflowParameters.setParams("time_left_for_this_task=30");
mlflowParameters.setDataPaths("xxxxxxxxxxx");
mlflowParameters.setExperimentNames("asbbb");
mlflowParameters.setModelNames("asbbb");
mlflowParameters.setDataPaths("/data/iris.csv");
mlflowParameters.setExperimentNames("AutoML");
mlflowParameters.setModelNames("AutoML");
mlflowParameters.setMlflowTrackingUris("http://127.0.0.1:5000");
return mlflowParameters;
}
private MlflowParameters createCustomProjectParameters() {
MlflowParameters mlflowParameters = new MlflowParameters();
mlflowParameters.setMlflowTaskType(MlflowConstants.MLFLOW_TASK_TYPE_PROJECTS);
mlflowParameters.setMlflowJobType(MlflowConstants.JOB_TYPE_CUSTOM_PROJECT);
mlflowParameters.setMlflowTrackingUris("http://127.0.0.1:5000");
mlflowParameters.setExperimentNames("custom_project");
mlflowParameters.setParams("-P learning_rate=0.2 -P colsample_bytree=0.8 -P subsample=0.9");
mlflowParameters.setMlflowProjectRepository("https://github.com/mlflow/mlflow#examples/xgboost/xgboost_native");
return mlflowParameters;
}
private MlflowParameters createModelDeplyMlflowParameters() {
MlflowParameters mlflowParameters = new MlflowParameters();
mlflowParameters.setMlflowTaskType(MlflowConstants.MLFLOW_TASK_TYPE_MODELS);

4
dolphinscheduler-ui/src/locales/modules/en_US.ts

@ -993,6 +993,10 @@ const project = {
mlflow_deployType: 'Deploy Mode',
mlflow_deployModelKey: 'model-uri',
mlflow_deployPort: 'Port',
mlflowProjectRepository: 'Repository',
mlflowProjectRepository_tips: 'github respository or path on worker',
mlflowProjectVersion: 'Project Version',
mlflowProjectVersion_tips: 'git version',
send_email: 'Send Email',
log_display: 'Log display',
rows_of_result: 'rows of result',

4
dolphinscheduler-ui/src/locales/modules/zh_CN.ts

@ -976,6 +976,10 @@ const project = {
mlflow_deployType: '部署类型',
mlflow_deployModelKey: '部署的模型uri',
mlflow_deployPort: '监听端口',
mlflowProjectRepository: '运行仓库',
mlflowProjectRepository_tips: '可以为github仓库或worker上的路径',
mlflowProjectVersion: '项目版本',
mlflowProjectVersion_tips: '项目git版本',
send_email: '发送邮件',
log_display: '日志显示',
rows_of_result: '行查询结果',

77
dolphinscheduler-ui/src/views/projects/task/components/node/fields/use-mlflow-projects.ts

@ -36,14 +36,16 @@ export function useMlflowProjects(model: {
const resetSpan = () => {
experimentNameSpan.value = model.isProjects ? 12 : 0
registerModelSpan.value = model.isProjects ? 6 : 0
mlflowJobTypeSpan.value = model.isProjects ? 12 : 0
paramsSpan.value = model.isProjects ? 24 : 0
dataPathSpan.value = model.isProjects ? 24 : 0
registerModelSpan.value =
model.isProjects && model.mlflowJobType != 'CustomProject' ? 6 : 0
dataPathSpan.value =
model.isProjects && model.mlflowJobType != 'CustomProject' ? 24 : 0
}
watch(
() => [model.mlflowTaskType, model.registerModel],
() => [model.mlflowTaskType, model.mlflowJobType],
() => {
setFlag()
resetSpan()
@ -123,7 +125,8 @@ export function useMlflowProjects(model: {
}
},
...useBasicAlgorithm(model),
...useAutoML(model)
...useAutoML(model),
...useCustomProject(model)
]
}
@ -144,7 +147,7 @@ export function useBasicAlgorithm(model: {
}
const resetSpan = () => {
algorithmSpan.value = model.isBasicAlgorithm ? 12 : 0
algorithmSpan.value = model.isBasicAlgorithm ? 24 : 0
searchParamsSpan.value = model.isBasicAlgorithm ? 24 : 0
}
@ -155,6 +158,8 @@ export function useBasicAlgorithm(model: {
resetSpan()
}
)
setFlag()
resetSpan()
return [
{
@ -204,6 +209,10 @@ export function useAutoML(model: { [field: string]: any }): IJsonItem[] {
resetSpan()
}
)
setFlag()
resetSpan()
return [
{
type: 'select',
@ -215,6 +224,60 @@ export function useAutoML(model: { [field: string]: any }): IJsonItem[] {
]
}
export function useCustomProject(model: { [field: string]: any }): IJsonItem[] {
const { t } = useI18n()
const mlflowProjectRepositorySpan = ref(0)
const mlflowProjectVersionSpan = ref(0)
const customParamsSpan = ref(0)
const setFlag = () => {
model.isCustomProject =
model.mlflowJobType === 'CustomProject' &&
model.mlflowTaskType === 'MLflow Projects'
? true
: false
}
const resetSpan = () => {
mlflowProjectRepositorySpan.value = model.isCustomProject ? 24 : 0
mlflowProjectVersionSpan.value = model.isCustomProject ? 12 : 0
customParamsSpan.value = model.isCustomProject ? 24 : 0
}
watch(
() => [model.mlflowTaskType, model.mlflowJobType],
() => {
setFlag()
resetSpan()
}
)
setFlag()
resetSpan()
return [
{
type: 'input',
field: 'mlflowProjectRepository',
name: t('project.node.mlflowProjectRepository'),
span: mlflowProjectRepositorySpan,
props: {
placeholder: t('project.node.mlflowProjectRepository_tips')
}
},
{
type: 'input',
field: 'mlflowProjectVersion',
name: t('project.node.mlflowProjectVersion'),
span: mlflowProjectVersionSpan,
props: {
placeholder: t('project.node.mlflowProjectVersion_tips')
}
}
]
}
export const MLFLOW_JOB_TYPE = [
{
label: 'BasicAlgorithm',
@ -223,6 +286,10 @@ export const MLFLOW_JOB_TYPE = [
{
label: 'AutoML',
value: 'AutoML'
},
{
label: 'Custom Project',
value: 'CustomProject'
}
]
export const ALGORITHM = [

2
dolphinscheduler-ui/src/views/projects/task/components/node/format-data.ts

@ -351,6 +351,8 @@ export function formatParams(data: INodeData): {
taskParams.deployType = data.deployType
taskParams.deployPort = data.deployPort
taskParams.deployModelKey = data.deployModelKey
taskParams.mlflowProjectRepository = data.mlflowProjectRepository
taskParams.mlflowProjectVersion = data.mlflowProjectVersion
}
if (data.taskType === 'PIGEON') {

6
dolphinscheduler-ui/src/views/projects/task/components/node/tasks/use-mlflow.ts

@ -43,11 +43,13 @@ export function useMlflow({
workerGroup: 'default',
algorithm: 'svm',
mlflowTrackingUri: 'http://127.0.0.1:5000',
mlflowTaskType: 'MLflow Models',
mlflowTaskType: 'MLflow Projects',
deployType: 'MLFLOW',
deployPort: '7000',
mlflowJobType: 'AutoML',
mlflowJobType: 'CustomProject',
mlflowProjectVersion: 'master',
automlTool: 'flaml',
mlflowCustomProjectParameters: [],
delayTime: 0,
timeout: 30
} as INodeData)

2
dolphinscheduler-ui/src/views/projects/task/components/node/types.ts

@ -330,6 +330,8 @@ interface ITaskParams {
automlTool?: string
registerModel?: boolean
mlflowTaskType?: string
mlflowProjectRepository?: string
mlflowProjectVersion?: string
deployType?: string
deployPort?: string
deployModelKey?: string

Loading…
Cancel
Save