|
|
@ -435,7 +435,7 @@ |
|
|
|
<li><a href="https://blog.csdn.net/u011886447/article/details/79796802" target="_blank">Mysql</a> (5.5+) : 必装</li> |
|
|
|
<li><a href="https://blog.csdn.net/u011886447/article/details/79796802" target="_blank">Mysql</a> (5.5+) : 必装</li> |
|
|
|
<li><a href="https://www.oracle.com/technetwork/java/javase/downloads/index.html" target="_blank">JDK</a> (1.8+) : 必装</li> |
|
|
|
<li><a href="https://www.oracle.com/technetwork/java/javase/downloads/index.html" target="_blank">JDK</a> (1.8+) : 必装</li> |
|
|
|
<li><a href="https://www.jianshu.com/p/de90172ea680" target="_blank">ZooKeeper</a>(3.4.6) :必装 </li> |
|
|
|
<li><a href="https://www.jianshu.com/p/de90172ea680" target="_blank">ZooKeeper</a>(3.4.6) :必装 </li> |
|
|
|
<li><a href="https://blog.csdn.net/Evankaka/article/details/51612437" target="_blank">Hadoop</a>(2.7.3) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)</li> |
|
|
|
<li><a href="https://blog.csdn.net/Evankaka/article/details/51612437" target="_blank">Hadoop</a>(2.6+) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)</li> |
|
|
|
<li><a href="https://staroon.pro/2017/12/09/HiveInstall/" target="_blank">Hive</a>(1.2.1) : 选装,hive任务提交需要安装</li> |
|
|
|
<li><a href="https://staroon.pro/2017/12/09/HiveInstall/" target="_blank">Hive</a>(1.2.1) : 选装,hive任务提交需要安装</li> |
|
|
|
<li>Spark(1.x,2.x) : 选装,Spark任务提交需要安装</li> |
|
|
|
<li>Spark(1.x,2.x) : 选装,Spark任务提交需要安装</li> |
|
|
|
<li>PostgreSQL(8.2.15+) : 选装,PostgreSQL PostgreSQL存储过程需要安装</li> |
|
|
|
<li>PostgreSQL(8.2.15+) : 选装,PostgreSQL PostgreSQL存储过程需要安装</li> |
|
|
@ -450,13 +450,7 @@ |
|
|
|
<li>查看目录</li> |
|
|
|
<li>查看目录</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<p>正常编译完后,会在当前目录生成 target/escheduler-{version}/</p> |
|
|
|
<p>正常编译完后,会在当前目录生成 target/escheduler-{version}/</p> |
|
|
|
<pre><code> bin |
|
|
|
<ul> |
|
|
|
conf |
|
|
|
|
|
|
|
lib |
|
|
|
|
|
|
|
script |
|
|
|
|
|
|
|
sql |
|
|
|
|
|
|
|
install.sh |
|
|
|
|
|
|
|
</code></pre><ul> |
|
|
|
|
|
|
|
<li>说明</li> |
|
|
|
<li>说明</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code>bin : 基础服务启动脚本 |
|
|
|
<pre><code>bin : 基础服务启动脚本 |
|
|
@ -483,7 +477,9 @@ mysql -h {host} -u {user} -p{password} -D {db} < escheduler.sql |
|
|
|
|
|
|
|
|
|
|
|
mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql |
|
|
|
mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql |
|
|
|
</code></pre><h2 id="创建部署用户">创建部署用户</h2> |
|
|
|
</code></pre><h2 id="创建部署用户">创建部署用户</h2> |
|
|
|
<p>因为escheduler worker都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。</p> |
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>在所有需要部署调度的机器上创建部署用户,因为worker服务是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
<pre><code class="lang-部署账号">vi /etc/sudoers |
|
|
|
<pre><code class="lang-部署账号">vi /etc/sudoers |
|
|
|
|
|
|
|
|
|
|
|
# 部署用户是 escheduler 账号 |
|
|
|
# 部署用户是 escheduler 账号 |
|
|
@ -492,301 +488,65 @@ escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL |
|
|
|
# 并且需要注释掉 Default requiretty 一行 |
|
|
|
# 并且需要注释掉 Default requiretty 一行 |
|
|
|
#Default requiretty |
|
|
|
#Default requiretty |
|
|
|
</code></pre> |
|
|
|
</code></pre> |
|
|
|
<h2 id="配置文件说明">配置文件说明</h2> |
|
|
|
<h2 id="ssh免密配置">ssh免密配置</h2> |
|
|
|
<pre><code>说明:配置文件位于 target/escheduler-{version}/conf 下面 |
|
|
|
<p> 在部署机器和其他安装机器上配置ssh免密登录,如果要在部署机上安装调度,需要配置本机免密登录自己</p> |
|
|
|
</code></pre><h3 id="escheduler-alert">escheduler-alert</h3> |
|
|
|
|
|
|
|
<p>配置邮件告警信息</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>alert.properties </li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<pre><code>#以qq邮箱为例,如果是别的邮箱,请更改对应配置 |
|
|
|
|
|
|
|
#alert type is EMAIL/SMS |
|
|
|
|
|
|
|
alert.type=EMAIL |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# mail server configuration |
|
|
|
|
|
|
|
mail.protocol=SMTP |
|
|
|
|
|
|
|
mail.server.host=smtp.exmail.qq.com |
|
|
|
|
|
|
|
mail.server.port=25 |
|
|
|
|
|
|
|
mail.sender=xxxxxxx@qq.com |
|
|
|
|
|
|
|
mail.passwd=xxxxxxx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# xls file path, need manually create it before use if not exist |
|
|
|
|
|
|
|
xls.file.path=/opt/xls |
|
|
|
|
|
|
|
</code></pre><h3 id="escheduler-common">escheduler-common</h3> |
|
|
|
|
|
|
|
<p>通用配置文件配置,队列选择及地址配置,通用文件目录配置</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>common/common.properties</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<pre><code>#task queue implementation, default "zookeeper" |
|
|
|
|
|
|
|
escheduler.queue.impl=zookeeper |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# user data directory path, self configuration, please make sure the directory exists and have read write permissions |
|
|
|
|
|
|
|
data.basedir.path=/tmp/escheduler |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# directory path for user data download. self configuration, please make sure the directory exists and have read write permissions |
|
|
|
|
|
|
|
data.download.basedir.path=/tmp/escheduler/download |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# process execute directory. self configuration, please make sure the directory exists and have read write permissions |
|
|
|
|
|
|
|
process.exec.basepath=/tmp/escheduler/exec |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# data base dir, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/escheduler" is recommended |
|
|
|
|
|
|
|
data.store2hdfs.basepath=/escheduler |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# whether hdfs starts |
|
|
|
|
|
|
|
hdfs.startup.state=true |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions |
|
|
|
|
|
|
|
escheduler.env.path=/opt/.escheduler_env.sh |
|
|
|
|
|
|
|
escheduler.env.py=/opt/escheduler_env.py |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#resource.view.suffixs |
|
|
|
|
|
|
|
resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# is development state? default "false" |
|
|
|
|
|
|
|
development.state=false |
|
|
|
|
|
|
|
</code></pre><p>SHELL任务 环境变量配置</p> |
|
|
|
|
|
|
|
<pre><code>说明:配置文件位于 target/escheduler-{version}/conf/env 下面,这个会是Worker执行任务时加载的环境 |
|
|
|
|
|
|
|
</code></pre><p>.escheduler_env.sh </p> |
|
|
|
|
|
|
|
<pre><code>export HADOOP_HOME=/opt/soft/hadoop |
|
|
|
|
|
|
|
export HADOOP_CONF_DIR=/opt/soft/hadoop/etc/hadoop |
|
|
|
|
|
|
|
export SPARK_HOME1=/opt/soft/spark1 |
|
|
|
|
|
|
|
export SPARK_HOME2=/opt/soft/spark2 |
|
|
|
|
|
|
|
export PYTHON_HOME=/opt/soft/python |
|
|
|
|
|
|
|
export JAVA_HOME=/opt/soft/java |
|
|
|
|
|
|
|
export HIVE_HOME=/opt/soft/hive |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH |
|
|
|
|
|
|
|
</code></pre><p>​ </p> |
|
|
|
|
|
|
|
<p>Python任务 环境变量配置</p> |
|
|
|
|
|
|
|
<pre><code>说明:配置文件位于 target/escheduler-{version}/conf/env 下面 |
|
|
|
|
|
|
|
</code></pre><p>escheduler_env.py</p> |
|
|
|
|
|
|
|
<pre><code>import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HADOOP_HOME="/opt/soft/hadoop" |
|
|
|
|
|
|
|
SPARK_HOME1="/opt/soft/spark1" |
|
|
|
|
|
|
|
SPARK_HOME2="/opt/soft/spark2" |
|
|
|
|
|
|
|
PYTHON_HOME="/opt/soft/python" |
|
|
|
|
|
|
|
JAVA_HOME="/opt/soft/java" |
|
|
|
|
|
|
|
HIVE_HOME="/opt/soft/hive" |
|
|
|
|
|
|
|
PATH=os.environ['PATH'] |
|
|
|
|
|
|
|
PATH="%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s"%(HIVE_HOME,HADOOP_HOME,SPARK_HOME1,SPARK_HOME2,JAVA_HOME,PYTHON_HOME,PATH) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.putenv('PATH','%s'%PATH) |
|
|
|
|
|
|
|
</code></pre><p>hadoop 配置文件</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>common/hadoop/hadoop.properties</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<pre><code># ha or single namenode,If namenode ha needs to copy core-site.xml and hdfs-site.xml to the conf directory |
|
|
|
|
|
|
|
fs.defaultFS=hdfs://mycluster:8020
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#resourcemanager ha note this need ips , this empty if single |
|
|
|
|
|
|
|
yarn.resourcemanager.ha.rm.ids=192.168.xx.xx,192.168.xx.xx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# If it is a single resourcemanager, you only need to configure one host name. If it is resourcemanager HA, the default configuration is fine |
|
|
|
|
|
|
|
yarn.application.status.address=http://ark1:8088/ws/v1/cluster/apps/%s
|
|
|
|
|
|
|
|
</code></pre><p>定时器配置文件</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>quartz.properties</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<pre><code>#============================================================================ |
|
|
|
|
|
|
|
# Configure Main Scheduler Properties |
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
org.quartz.scheduler.instanceName = EasyScheduler |
|
|
|
|
|
|
|
org.quartz.scheduler.instanceId = AUTO |
|
|
|
|
|
|
|
org.quartz.scheduler.makeSchedulerThreadDaemon = true |
|
|
|
|
|
|
|
org.quartz.jobStore.useProperties = false |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
# Configure ThreadPool |
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool |
|
|
|
|
|
|
|
org.quartz.threadPool.makeThreadsDaemons = true |
|
|
|
|
|
|
|
org.quartz.threadPool.threadCount = 25 |
|
|
|
|
|
|
|
org.quartz.threadPool.threadPriority = 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
# Configure JobStore |
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX |
|
|
|
|
|
|
|
org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.StdJDBCDelegate |
|
|
|
|
|
|
|
org.quartz.jobStore.tablePrefix = QRTZ_ |
|
|
|
|
|
|
|
org.quartz.jobStore.isClustered = true |
|
|
|
|
|
|
|
org.quartz.jobStore.misfireThreshold = 60000 |
|
|
|
|
|
|
|
org.quartz.jobStore.clusterCheckinInterval = 5000 |
|
|
|
|
|
|
|
org.quartz.jobStore.dataSource = myDs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
# Configure Datasources |
|
|
|
|
|
|
|
#============================================================================ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.driver = com.mysql.jdbc.Driver |
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.URL = jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=utf8&useSSL=false
|
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.user = xx |
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.password = xx |
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.maxConnections = 10 |
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.validationQuery = select 1 |
|
|
|
|
|
|
|
</code></pre><p>zookeeper 配置文件</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
<ul> |
|
|
|
<li>zookeeper.properties</li> |
|
|
|
<li><a href="http://geek.analysys.cn/topic/113" target="_blank">将 <strong>主机器</strong> 和各个其它机器SSH打通</a></li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code>#zookeeper cluster |
|
|
|
<h2 id="部署">部署</h2> |
|
|
|
zookeeper.quorum=192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181 |
|
|
|
<h3 id="1-修改安装目录权限">1. 修改安装目录权限</h3> |
|
|
|
|
|
|
|
|
|
|
|
#escheduler root directory |
|
|
|
|
|
|
|
zookeeper.escheduler.root=/escheduler |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#zookeeper server dirctory |
|
|
|
|
|
|
|
zookeeper.escheduler.dead.servers=/escheduler/dead-servers |
|
|
|
|
|
|
|
zookeeper.escheduler.masters=/escheduler/masters |
|
|
|
|
|
|
|
zookeeper.escheduler.workers=/escheduler/workers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#zookeeper lock dirctory |
|
|
|
|
|
|
|
zookeeper.escheduler.lock.masters=/escheduler/lock/masters |
|
|
|
|
|
|
|
zookeeper.escheduler.lock.workers=/escheduler/lock/workers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#escheduler failover directory |
|
|
|
|
|
|
|
zookeeper.escheduler.lock.masters.failover=/escheduler/lock/failover/masters |
|
|
|
|
|
|
|
zookeeper.escheduler.lock.workers.failover=/escheduler/lock/failover/workers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#escheduler failover directory |
|
|
|
|
|
|
|
zookeeper.session.timeout=300 |
|
|
|
|
|
|
|
zookeeper.connection.timeout=300 |
|
|
|
|
|
|
|
zookeeper.retry.sleep=1000 |
|
|
|
|
|
|
|
zookeeper.retry.maxtime=5 |
|
|
|
|
|
|
|
</code></pre><h3 id="escheduler-dao">escheduler-dao</h3> |
|
|
|
|
|
|
|
<p>dao数据源配置</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
<ul> |
|
|
|
<li>dao/data_source.properties</li> |
|
|
|
<li>安装目录如下:</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code># base spring data source configuration |
|
|
|
<pre><code> bin |
|
|
|
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource |
|
|
|
conf |
|
|
|
spring.datasource.driver-class-name=com.mysql.jdbc.Driver |
|
|
|
install.sh |
|
|
|
spring.datasource.url=jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=UTF-8
|
|
|
|
lib |
|
|
|
spring.datasource.username=xx |
|
|
|
script |
|
|
|
spring.datasource.password=xx |
|
|
|
sql |
|
|
|
|
|
|
|
</code></pre><ul> |
|
|
|
# connection configuration |
|
|
|
<li><p>修改权限(deployUser修改为对应部署用户)</p> |
|
|
|
spring.datasource.initialSize=5 |
|
|
|
<p> <code>sudo chown -R deployUser:deployUser *</code></p> |
|
|
|
# min connection number |
|
|
|
</li> |
|
|
|
spring.datasource.minIdle=5 |
|
|
|
|
|
|
|
# max connection number |
|
|
|
|
|
|
|
spring.datasource.maxActive=50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# max wait time for get a connection in milliseconds. if configuring maxWait, fair locks are enabled by default and concurrency efficiency decreases. |
|
|
|
|
|
|
|
# If necessary, unfair locks can be used by configuring the useUnfairLock attribute to true. |
|
|
|
|
|
|
|
spring.datasource.maxWait=60000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# milliseconds for check to close free connections |
|
|
|
|
|
|
|
spring.datasource.timeBetweenEvictionRunsMillis=60000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# the Destroy thread detects the connection interval and closes the physical connection in milliseconds if the connection idle time is greater than or equal to minEvictableIdleTimeMillis. |
|
|
|
|
|
|
|
spring.datasource.timeBetweenConnectErrorMillis=60000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# the longest time a connection remains idle without being evicted, in milliseconds |
|
|
|
|
|
|
|
spring.datasource.minEvictableIdleTimeMillis=300000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#the SQL used to check whether the connection is valid requires a query statement. If validation Query is null, testOnBorrow, testOnReturn, and testWhileIdle will not work. |
|
|
|
|
|
|
|
spring.datasource.validationQuery=SELECT 1 |
|
|
|
|
|
|
|
#check whether the connection is valid for timeout, in seconds |
|
|
|
|
|
|
|
spring.datasource.validationQueryTimeout=3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# when applying for a connection, if it is detected that the connection is idle longer than time Between Eviction Runs Millis, |
|
|
|
|
|
|
|
# validation Query is performed to check whether the connection is valid |
|
|
|
|
|
|
|
spring.datasource.testWhileIdle=true |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#execute validation to check if the connection is valid when applying for a connection |
|
|
|
|
|
|
|
spring.datasource.testOnBorrow=true |
|
|
|
|
|
|
|
#execute validation to check if the connection is valid when the connection is returned |
|
|
|
|
|
|
|
spring.datasource.testOnReturn=false |
|
|
|
|
|
|
|
spring.datasource.defaultAutoCommit=true |
|
|
|
|
|
|
|
spring.datasource.keepAlive=true |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# open PSCache, specify count PSCache for every connection |
|
|
|
|
|
|
|
spring.datasource.poolPreparedStatements=true |
|
|
|
|
|
|
|
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20 |
|
|
|
|
|
|
|
</code></pre><h3 id="escheduler-server">escheduler-server</h3> |
|
|
|
|
|
|
|
<p>master配置文件</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>master.properties</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code># master execute thread num |
|
|
|
<h3 id="2-修改环境变量文件">2. 修改环境变量文件</h3> |
|
|
|
master.exec.threads=100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# master execute task number in parallel |
|
|
|
|
|
|
|
master.exec.task.number=20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# master heartbeat interval |
|
|
|
|
|
|
|
master.heartbeat.interval=10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# master commit task retry times |
|
|
|
|
|
|
|
master.task.commit.retryTimes=5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# master commit task interval |
|
|
|
|
|
|
|
master.task.commit.interval=100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only less than cpu avg load, master server can work. default value : the number of cpu cores * 2 |
|
|
|
|
|
|
|
master.max.cpuload.avg=10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only larger than reserved memory, master server can work. default value : physical memory * 1/10, unit is G. |
|
|
|
|
|
|
|
master.reserved.memory=1 |
|
|
|
|
|
|
|
</code></pre><p>worker配置文件</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
<ul> |
|
|
|
<li>worker.properties</li> |
|
|
|
<li>根据业务需求,修改conf/env/目录下的<strong>escheduler_env.py</strong>,<strong>.escheduler_env.sh</strong>两个文件中的环境变量</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code># worker execute thread num |
|
|
|
<h3 id="3-修改部署参数">3. 修改部署参数</h3> |
|
|
|
worker.exec.threads=100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# worker heartbeat interval |
|
|
|
|
|
|
|
worker.heartbeat.interval=10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# submit the number of tasks at a time |
|
|
|
|
|
|
|
worker.fetch.task.num = 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only less than cpu avg load, worker server can work. default value : the number of cpu cores * 2 |
|
|
|
|
|
|
|
worker.max.cpuload.avg=10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only larger than reserved memory, worker server can work. default value : physical memory * 1/6, unit is G. |
|
|
|
|
|
|
|
worker.reserved.memory=1 |
|
|
|
|
|
|
|
</code></pre><h3 id="escheduler-api">escheduler-api</h3> |
|
|
|
|
|
|
|
<p>web配置文件</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
<ul> |
|
|
|
<li>application.properties</li> |
|
|
|
<li><p>修改 <strong>install.sh</strong>中的参数,替换成自身业务所需的值</p> |
|
|
|
|
|
|
|
</li> |
|
|
|
|
|
|
|
<li><p>如果使用hdfs相关功能,需要拷贝<strong>hdfs-site.xml</strong>和<strong>core-site.xml</strong>到conf目录下</p> |
|
|
|
|
|
|
|
</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code># server port |
|
|
|
<h3 id="4-一键部署">4. 一键部署</h3> |
|
|
|
server.port=12345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# session config |
|
|
|
|
|
|
|
server.session.timeout=7200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server.context-path=/escheduler/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# file size limit for upload |
|
|
|
|
|
|
|
spring.http.multipart.max-file-size=1024MB |
|
|
|
|
|
|
|
spring.http.multipart.max-request-size=1024MB |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# post content |
|
|
|
|
|
|
|
server.max-http-post-size=5000000 |
|
|
|
|
|
|
|
</code></pre><h2 id="伪分布式部署">伪分布式部署</h2> |
|
|
|
|
|
|
|
<h3 id="1,创建部署用户">1,创建部署用户</h3> |
|
|
|
|
|
|
|
<p>​ 如上 <strong>创建部署用户</strong></p> |
|
|
|
|
|
|
|
<h3 id="2,根据实际需求来创建hdfs根路径">2,根据实际需求来创建HDFS根路径</h3> |
|
|
|
|
|
|
|
<p>​ 根据 <strong>common/common.properties</strong> 中 <strong>hdfs.startup.state</strong> 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 <strong>owner</strong> 修改为<strong>部署用户</strong>,否则忽略此步骤</p> |
|
|
|
|
|
|
|
<h3 id="3,项目编译">3,项目编译</h3> |
|
|
|
|
|
|
|
<p>​ 如上进行 <strong>项目编译</strong></p> |
|
|
|
|
|
|
|
<h3 id="4,修改配置文件">4,修改配置文件</h3> |
|
|
|
|
|
|
|
<p>​ 根据 <strong>配置文件说明</strong> 修改配置文件和 <strong>环境变量</strong> 文件</p> |
|
|
|
|
|
|
|
<h3 id="5,创建目录并将环境变量文件复制到指定目录">5,创建目录并将环境变量文件复制到指定目录</h3> |
|
|
|
|
|
|
|
<ul> |
|
|
|
<ul> |
|
|
|
<li><p>创建 <strong>common/common.properties</strong> 下的data.basedir.path、data.download.basedir.path和process.exec.basepath路径</p> |
|
|
|
<li><p>安装zookeeper工具 </p> |
|
|
|
|
|
|
|
<p> <code>pip install kazoo</code></p> |
|
|
|
|
|
|
|
</li> |
|
|
|
|
|
|
|
<li><p>切换到部署用户,一键部署</p> |
|
|
|
|
|
|
|
<p> <code>sh install.sh</code> </p> |
|
|
|
</li> |
|
|
|
</li> |
|
|
|
<li><p>将<strong>.escheduler_env.sh</strong> 和 <strong>escheduler_env.py</strong> 两个环境变量文件复制到 <strong>common/common.properties</strong>配置的<strong>escheduler.env.path</strong> 和 <strong>escheduler.env.py</strong> 的目录下,并将 <strong>owner</strong> 修改为<strong>部署用户</strong></p> |
|
|
|
<li><p>jps查看服务是否启动</p> |
|
|
|
</li> |
|
|
|
</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<h3 id="6,启停服务">6,启停服务</h3> |
|
|
|
<pre><code class="lang-aidl"> MasterServer ----- master服务 |
|
|
|
|
|
|
|
WorkerServer ----- worker服务 |
|
|
|
|
|
|
|
LoggerServer ----- logger服务 |
|
|
|
|
|
|
|
ApiApplicationServer ----- api服务 |
|
|
|
|
|
|
|
AlertServer ----- alert服务 |
|
|
|
|
|
|
|
</code></pre> |
|
|
|
|
|
|
|
<h2 id="日志查看">日志查看</h2> |
|
|
|
|
|
|
|
<p>日志统一存放于指定文件夹内</p> |
|
|
|
|
|
|
|
<pre><code class="lang-日志路径"> logs/ |
|
|
|
|
|
|
|
├── escheduler-alert-server.log |
|
|
|
|
|
|
|
├── escheduler-master-server.log |
|
|
|
|
|
|
|
|—— escheduler-worker-server.log |
|
|
|
|
|
|
|
|—— escheduler-api-server.log |
|
|
|
|
|
|
|
|—— escheduler-logger-server.log |
|
|
|
|
|
|
|
</code></pre> |
|
|
|
|
|
|
|
<h2 id="启停服务">启停服务</h2> |
|
|
|
<ul> |
|
|
|
<ul> |
|
|
|
<li>启停Master</li> |
|
|
|
<li>启停Master</li> |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
@ -813,54 +573,7 @@ sh ./bin/escheduler-daemon.sh stop logger-server |
|
|
|
</ul> |
|
|
|
</ul> |
|
|
|
<pre><code>sh ./bin/escheduler-daemon.sh start alert-server |
|
|
|
<pre><code>sh ./bin/escheduler-daemon.sh start alert-server |
|
|
|
sh ./bin/escheduler-daemon.sh stop alert-server |
|
|
|
sh ./bin/escheduler-daemon.sh stop alert-server |
|
|
|
</code></pre><h2 id="分布式部署">分布式部署</h2> |
|
|
|
|
|
|
|
<h3 id="1,创建部署用户">1,创建部署用户</h3> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>在需要部署调度的机器上如上 <strong>创建部署用户</strong></li> |
|
|
|
|
|
|
|
<li><a href="https://blog.csdn.net/thinkmore1314/article/details/22489203" target="_blank">将 <strong>主机器</strong> 和各个其它机器SSH打通</a></li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<h3 id="2,根据实际需求来创建hdfs根路径">2,根据实际需求来创建HDFS根路径</h3> |
|
|
|
|
|
|
|
<p>​ 根据 <strong>common/common.properties</strong> 中 <strong>hdfs.startup.state</strong> 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 <strong>owner</strong> 修改为<strong>部署用户</strong>,否则忽略此步骤</p> |
|
|
|
|
|
|
|
<h3 id="3,项目编译">3,项目编译</h3> |
|
|
|
|
|
|
|
<p>​ 如上进行 <strong>项目编译</strong></p> |
|
|
|
|
|
|
|
<h3 id="4,将环境变量文件复制到指定目录">4,将环境变量文件复制到指定目录</h3> |
|
|
|
|
|
|
|
<p>​ 将<strong>.escheduler_env.sh</strong> 和 <strong>escheduler_env.py</strong> 两个环境变量文件复制到 <strong>common/common.properties</strong>配置的<strong>escheduler.env.path</strong> 和 <strong>escheduler.env.py</strong> 的目录下,并将 <strong>owner</strong> 修改为<strong>部署用户</strong></p> |
|
|
|
|
|
|
|
<h3 id="5,修改-installsh">5,修改 install.sh</h3> |
|
|
|
|
|
|
|
<p>​ 修改 install.sh 中变量的值,替换成自身业务所需的值</p> |
|
|
|
|
|
|
|
<h3 id="6,一键部署">6,一键部署</h3> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>安装 pip install kazoo</li> |
|
|
|
|
|
|
|
<li>安装目录如下:</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<pre><code> bin |
|
|
|
|
|
|
|
conf |
|
|
|
|
|
|
|
escheduler-1.0.0-SNAPSHOT.tar.gz |
|
|
|
|
|
|
|
install.sh |
|
|
|
|
|
|
|
lib |
|
|
|
|
|
|
|
monitor_server.py |
|
|
|
|
|
|
|
script |
|
|
|
|
|
|
|
sql |
|
|
|
|
|
|
|
</code></pre><ul> |
|
|
|
|
|
|
|
<li><p>使用部署用户 sh install.sh 一键部署</p> |
|
|
|
|
|
|
|
<ul> |
|
|
|
|
|
|
|
<li>注意:scp_hosts.sh 里 <code>tar -zxvf $workDir/../escheduler-1.0.0.tar.gz -C $installPath</code> 中的版本号(1.0.0)需要执行前手动替换成对应的版本号</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
</li> |
|
|
|
|
|
|
|
</ul> |
|
|
|
|
|
|
|
<h2 id="服务监控">服务监控</h2> |
|
|
|
|
|
|
|
<p>monitor_server.py 脚本是监听,master和worker服务挂掉重启的脚本</p> |
|
|
|
|
|
|
|
<p>注意:在全部服务都启动之后启动</p> |
|
|
|
|
|
|
|
<p>nohup python -u monitor_server.py > nohup.out 2>&1 &</p> |
|
|
|
|
|
|
|
<h2 id="日志查看">日志查看</h2> |
|
|
|
|
|
|
|
<p>日志统一存放于指定文件夹内</p> |
|
|
|
|
|
|
|
<pre><code class="lang-日志路径"> logs/ |
|
|
|
|
|
|
|
├── escheduler-alert-server.log |
|
|
|
|
|
|
|
├── escheduler-master-server.log |
|
|
|
|
|
|
|
|—— escheduler-worker-server.log |
|
|
|
|
|
|
|
|—— escheduler-api-server.log |
|
|
|
|
|
|
|
|—— escheduler-logger-server.log |
|
|
|
|
|
|
|
</code></pre> |
|
|
|
</code></pre> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</section> |
|
|
|
</section> |
|
|
|
|
|
|
|
|
|
|
@ -899,7 +612,7 @@ sh ./bin/escheduler-daemon.sh stop alert-server |
|
|
|
<script> |
|
|
|
<script> |
|
|
|
var gitbook = gitbook || []; |
|
|
|
var gitbook = gitbook || []; |
|
|
|
gitbook.push(function() { |
|
|
|
gitbook.push(function() { |
|
|
|
gitbook.page.hasChanged({"page":{"title":"后端部署文档","level":"1.3.1","depth":2,"next":{"title":"系统使用手册","level":"1.4","depth":1,"anchor":"#使用手册","path":"系统使用手册.md","ref":"系统使用手册.md#使用手册","articles":[]},"previous":{"title":"后端部署文档","level":"1.3","depth":1,"ref":"","articles":[{"title":"后端部署文档","level":"1.3.1","depth":2,"anchor":"#部署文档","path":"后端部署文档.md","ref":"后端部署文档.md#部署文档","articles":[]}]},"dir":"ltr"},"config":{"plugins":["expandable-chapters","insert-logo-link","livereload"],"styles":{"website":"./styles/website.css"},"pluginsConfig":{"livereload":{},"insert-logo-link":{"src":"http://geek.analysys.cn/static/upload/236/2019-03-29/379450b4-7919-4707-877c-4d33300377d4.png","url":"https://github.com/analysys/EasyScheduler"},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"fontsettings":{"theme":"white","family":"sans","size":2},"highlight":{},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"expandable-chapters":{}},"theme":"default","author":"YIGUAN","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{},"title":"调度系统-EasyScheduler","language":"zh-hans","gitbook":"3.2.3","description":"调度系统"},"file":{"path":"后端部署文档.md","mtime":"2019-04-08T08:09:31.074Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-04-10T07:14:01.407Z"},"basePath":".","book":{"language":""}}); |
|
|
|
gitbook.page.hasChanged({"page":{"title":"后端部署文档","level":"1.3.1","depth":2,"next":{"title":"系统使用手册","level":"1.4","depth":1,"anchor":"#使用手册","path":"系统使用手册.md","ref":"系统使用手册.md#使用手册","articles":[]},"previous":{"title":"后端部署文档","level":"1.3","depth":1,"ref":"","articles":[{"title":"后端部署文档","level":"1.3.1","depth":2,"anchor":"#部署文档","path":"后端部署文档.md","ref":"后端部署文档.md#部署文档","articles":[]}]},"dir":"ltr"},"config":{"plugins":["expandable-chapters","insert-logo-link","livereload"],"styles":{"website":"./styles/website.css"},"pluginsConfig":{"livereload":{},"insert-logo-link":{"src":"http://geek.analysys.cn/static/upload/236/2019-03-29/379450b4-7919-4707-877c-4d33300377d4.png","url":"https://github.com/analysys/EasyScheduler"},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"fontsettings":{"theme":"white","family":"sans","size":2},"highlight":{},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"expandable-chapters":{}},"theme":"default","author":"YIGUAN","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{},"title":"调度系统-EasyScheduler","language":"zh-hans","gitbook":"3.2.3","description":"调度系统"},"file":{"path":"后端部署文档.md","mtime":"2019-04-12T03:01:32.518Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-04-10T07:14:01.407Z"},"basePath":".","book":{"language":""}}); |
|
|
|
}); |
|
|
|
}); |
|
|
|
</script> |
|
|
|
</script> |
|
|
|
</div> |
|
|
|
</div> |
|
|
|