|
|
|
|
# 后端部署文档
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 基础软件安装
|
|
|
|
|
|
|
|
|
|
* [Mysql](https://blog.csdn.net/u011886447/article/details/79796802) (5.5+) : 必装
|
|
|
|
|
* [JDK](https://www.oracle.com/technetwork/java/javase/downloads/index.html) (1.8+) : 必装
|
|
|
|
|
* [ZooKeeper](https://www.jianshu.com/p/de90172ea680)(3.4.6) :必装
|
|
|
|
|
* [Hadoop](https://blog.csdn.net/Evankaka/article/details/51612437)(2.7.3) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)
|
|
|
|
|
* [Hive](https://staroon.pro/2017/12/09/HiveInstall/)(1.2.1) : 选装,hive任务提交需要安装
|
|
|
|
|
* Spark(1.x,2.x) : 选装,Spark任务提交需要安装
|
|
|
|
|
* PostgreSQL(8.2.15+) : 选装,PostgreSQL PostgreSQL存储过程需要安装
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
注意:EasyScheduler本身不依赖Hadoop、Hive、Spark、PostgreSQL,仅是会调用他们的Client,用于对应任务的运行。
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 项目编译
|
|
|
|
|
|
|
|
|
|
* 执行编译命令:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
mvn -U clean package assembly:assembly -Dmaven.test.skip=true
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
* 查看目录
|
|
|
|
|
|
|
|
|
|
正常编译完后,会在当前目录生成 target/escheduler-{version}/
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
bin
|
|
|
|
|
conf
|
|
|
|
|
lib
|
|
|
|
|
script
|
|
|
|
|
sql
|
|
|
|
|
install.sh
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 说明
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
bin : 基础服务启动脚本
|
|
|
|
|
conf : 项目配置文件
|
|
|
|
|
lib : 项目依赖jar包,包括各个模块jar和第三方jar
|
|
|
|
|
script : 集群启动、停止和服务监控启停脚本
|
|
|
|
|
sql : 项目依赖sql文件
|
|
|
|
|
install.sh : 一键部署脚本
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 数据库初始化
|
|
|
|
|
|
|
|
|
|
* 创建database和账号
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
mysql -h {host} -u {user} -p{password}
|
|
|
|
|
mysql> CREATE DATABASE escheduler DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
|
|
|
|
|
mysql> GRANT ALL PRIVILEGES ON escheduler.* TO '{user}'@'%' IDENTIFIED BY '{password}';
|
|
|
|
|
mysql> GRANT ALL PRIVILEGES ON escheduler.* TO '{user}'@'localhost' IDENTIFIED BY '{password}';
|
|
|
|
|
mysql> flush privileges;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
* 创建表和导入基础数据
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
说明:在 target/escheduler-{version}/sql/escheduler.sql和quartz.sql
|
|
|
|
|
|
|
|
|
|
mysql -h {host} -u {user} -p{password} -D {db} < escheduler.sql
|
|
|
|
|
|
|
|
|
|
mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 创建部署用户
|
|
|
|
|
|
|
|
|
|
因为escheduler worker都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
|
|
|
|
|
|
|
|
|
|
```部署账号
|
|
|
|
|
vi /etc/sudoers
|
|
|
|
|
|
|
|
|
|
# 部署用户是 escheduler 账号
|
|
|
|
|
escheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
|
|
|
|
|
|
|
|
|
|
# 并且需要注释掉 Default requiretty 一行
|
|
|
|
|
#Default requiretty
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 配置文件说明
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
说明:配置文件位于 target/escheduler-{version}/conf 下面
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### escheduler-alert
|
|
|
|
|
|
|
|
|
|
配置邮件告警信息
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* alert.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#以qq邮箱为例,如果是别的邮箱,请更改对应配置
|
|
|
|
|
#alert type is EMAIL/SMS
|
|
|
|
|
alert.type=EMAIL
|
|
|
|
|
|
|
|
|
|
# mail server configuration
|
|
|
|
|
mail.protocol=SMTP
|
|
|
|
|
mail.server.host=smtp.exmail.qq.com
|
|
|
|
|
mail.server.port=25
|
|
|
|
|
mail.sender=xxxxxxx@qq.com
|
|
|
|
|
mail.passwd=xxxxxxx
|
|
|
|
|
|
|
|
|
|
# xls file path, need manually create it before use if not exist
|
|
|
|
|
xls.file.path=/opt/xls
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### escheduler-common
|
|
|
|
|
|
|
|
|
|
通用配置文件配置,队列选择及地址配置,通用文件目录配置
|
|
|
|
|
|
|
|
|
|
- common/common.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#task queue implementation, default "zookeeper"
|
|
|
|
|
escheduler.queue.impl=zookeeper
|
|
|
|
|
|
|
|
|
|
# user data directory path, self configuration, please make sure the directory exists and have read write permissions
|
|
|
|
|
data.basedir.path=/tmp/escheduler
|
|
|
|
|
|
|
|
|
|
# directory path for user data download. self configuration, please make sure the directory exists and have read write permissions
|
|
|
|
|
data.download.basedir.path=/tmp/escheduler/download
|
|
|
|
|
|
|
|
|
|
# process execute directory. self configuration, please make sure the directory exists and have read write permissions
|
|
|
|
|
process.exec.basepath=/tmp/escheduler/exec
|
|
|
|
|
|
|
|
|
|
# data base dir, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/escheduler" is recommended
|
|
|
|
|
data.store2hdfs.basepath=/escheduler
|
|
|
|
|
|
|
|
|
|
# whether hdfs starts
|
|
|
|
|
hdfs.startup.state=true
|
|
|
|
|
|
|
|
|
|
# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions
|
|
|
|
|
escheduler.env.path=/opt/.escheduler_env.sh
|
|
|
|
|
escheduler.env.py=/opt/escheduler_env.py
|
|
|
|
|
|
|
|
|
|
#resource.view.suffixs
|
|
|
|
|
resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml
|
|
|
|
|
|
|
|
|
|
# is development state? default "false"
|
|
|
|
|
development.state=false
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SHELL任务 环境变量配置
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
说明:配置文件位于 target/escheduler-{version}/conf/env 下面,这个会是Worker执行任务时加载的环境
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
.escheduler_env.sh
|
|
|
|
|
```
|
|
|
|
|
export HADOOP_HOME=/opt/soft/hadoop
|
|
|
|
|
export HADOOP_CONF_DIR=/opt/soft/hadoop/etc/hadoop
|
|
|
|
|
export SPARK_HOME1=/opt/soft/spark1
|
|
|
|
|
export SPARK_HOME2=/opt/soft/spark2
|
|
|
|
|
export PYTHON_HOME=/opt/soft/python
|
|
|
|
|
export JAVA_HOME=/opt/soft/java
|
|
|
|
|
export HIVE_HOME=/opt/soft/hive
|
|
|
|
|
|
|
|
|
|
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Python任务 环境变量配置
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
说明:配置文件位于 target/escheduler-{version}/conf/env 下面
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
escheduler_env.py
|
|
|
|
|
```
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
HADOOP_HOME="/opt/soft/hadoop"
|
|
|
|
|
SPARK_HOME1="/opt/soft/spark1"
|
|
|
|
|
SPARK_HOME2="/opt/soft/spark2"
|
|
|
|
|
PYTHON_HOME="/opt/soft/python"
|
|
|
|
|
JAVA_HOME="/opt/soft/java"
|
|
|
|
|
HIVE_HOME="/opt/soft/hive"
|
|
|
|
|
PATH=os.environ['PATH']
|
|
|
|
|
PATH="%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s"%(HIVE_HOME,HADOOP_HOME,SPARK_HOME1,SPARK_HOME2,JAVA_HOME,PYTHON_HOME,PATH)
|
|
|
|
|
|
|
|
|
|
os.putenv('PATH','%s'%PATH)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hadoop 配置文件
|
|
|
|
|
|
|
|
|
|
- common/hadoop/hadoop.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# ha or single namenode,If namenode ha needs to copy core-site.xml and hdfs-site.xml to the conf directory
|
|
|
|
|
fs.defaultFS=hdfs://mycluster:8020
|
|
|
|
|
|
|
|
|
|
#resourcemanager ha note this need ips , this empty if single
|
|
|
|
|
yarn.resourcemanager.ha.rm.ids=192.168.xx.xx,192.168.xx.xx
|
|
|
|
|
|
|
|
|
|
# If it is a single resourcemanager, you only need to configure one host name. If it is resourcemanager HA, the default configuration is fine
|
|
|
|
|
yarn.application.status.address=http://ark1:8088/ws/v1/cluster/apps/%s
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
定时器配置文件
|
|
|
|
|
|
|
|
|
|
- quartz.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#============================================================================
|
|
|
|
|
# Configure Main Scheduler Properties
|
|
|
|
|
#============================================================================
|
|
|
|
|
org.quartz.scheduler.instanceName = EasyScheduler
|
|
|
|
|
org.quartz.scheduler.instanceId = AUTO
|
|
|
|
|
org.quartz.scheduler.makeSchedulerThreadDaemon = true
|
|
|
|
|
org.quartz.jobStore.useProperties = false
|
|
|
|
|
|
|
|
|
|
#============================================================================
|
|
|
|
|
# Configure ThreadPool
|
|
|
|
|
#============================================================================
|
|
|
|
|
|
|
|
|
|
org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
|
|
|
|
|
org.quartz.threadPool.makeThreadsDaemons = true
|
|
|
|
|
org.quartz.threadPool.threadCount = 25
|
|
|
|
|
org.quartz.threadPool.threadPriority = 5
|
|
|
|
|
|
|
|
|
|
#============================================================================
|
|
|
|
|
# Configure JobStore
|
|
|
|
|
#============================================================================
|
|
|
|
|
|
|
|
|
|
org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX
|
|
|
|
|
org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.StdJDBCDelegate
|
|
|
|
|
org.quartz.jobStore.tablePrefix = QRTZ_
|
|
|
|
|
org.quartz.jobStore.isClustered = true
|
|
|
|
|
org.quartz.jobStore.misfireThreshold = 60000
|
|
|
|
|
org.quartz.jobStore.clusterCheckinInterval = 5000
|
|
|
|
|
org.quartz.jobStore.dataSource = myDs
|
|
|
|
|
|
|
|
|
|
#============================================================================
|
|
|
|
|
# Configure Datasources
|
|
|
|
|
#============================================================================
|
|
|
|
|
|
|
|
|
|
org.quartz.dataSource.myDs.driver = com.mysql.jdbc.Driver
|
|
|
|
|
org.quartz.dataSource.myDs.URL = jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=utf8&useSSL=false
|
|
|
|
|
org.quartz.dataSource.myDs.user = xx
|
|
|
|
|
org.quartz.dataSource.myDs.password = xx
|
|
|
|
|
org.quartz.dataSource.myDs.maxConnections = 10
|
|
|
|
|
org.quartz.dataSource.myDs.validationQuery = select 1
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zookeeper 配置文件
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- zookeeper.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#zookeeper cluster
|
|
|
|
|
zookeeper.quorum=192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181
|
|
|
|
|
|
|
|
|
|
#escheduler root directory
|
|
|
|
|
zookeeper.escheduler.root=/escheduler
|
|
|
|
|
|
|
|
|
|
#zookeeper server dirctory
|
|
|
|
|
zookeeper.escheduler.dead.servers=/escheduler/dead-servers
|
|
|
|
|
zookeeper.escheduler.masters=/escheduler/masters
|
|
|
|
|
zookeeper.escheduler.workers=/escheduler/workers
|
|
|
|
|
|
|
|
|
|
#zookeeper lock dirctory
|
|
|
|
|
zookeeper.escheduler.lock.masters=/escheduler/lock/masters
|
|
|
|
|
zookeeper.escheduler.lock.workers=/escheduler/lock/workers
|
|
|
|
|
|
|
|
|
|
#escheduler failover directory
|
|
|
|
|
zookeeper.escheduler.lock.masters.failover=/escheduler/lock/failover/masters
|
|
|
|
|
zookeeper.escheduler.lock.workers.failover=/escheduler/lock/failover/workers
|
|
|
|
|
|
|
|
|
|
#escheduler failover directory
|
|
|
|
|
zookeeper.session.timeout=300
|
|
|
|
|
zookeeper.connection.timeout=300
|
|
|
|
|
zookeeper.retry.sleep=1000
|
|
|
|
|
zookeeper.retry.maxtime=5
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### escheduler-dao
|
|
|
|
|
|
|
|
|
|
dao数据源配置
|
|
|
|
|
|
|
|
|
|
- dao/data_source.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# base spring data source configuration
|
|
|
|
|
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
|
|
|
|
|
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
|
|
|
|
|
spring.datasource.url=jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=UTF-8
|
|
|
|
|
spring.datasource.username=xx
|
|
|
|
|
spring.datasource.password=xx
|
|
|
|
|
|
|
|
|
|
# connection configuration
|
|
|
|
|
spring.datasource.initialSize=5
|
|
|
|
|
# min connection number
|
|
|
|
|
spring.datasource.minIdle=5
|
|
|
|
|
# max connection number
|
|
|
|
|
spring.datasource.maxActive=50
|
|
|
|
|
|
|
|
|
|
# max wait time for get a connection in milliseconds. if configuring maxWait, fair locks are enabled by default and concurrency efficiency decreases.
|
|
|
|
|
# If necessary, unfair locks can be used by configuring the useUnfairLock attribute to true.
|
|
|
|
|
spring.datasource.maxWait=60000
|
|
|
|
|
|
|
|
|
|
# milliseconds for check to close free connections
|
|
|
|
|
spring.datasource.timeBetweenEvictionRunsMillis=60000
|
|
|
|
|
|
|
|
|
|
# the Destroy thread detects the connection interval and closes the physical connection in milliseconds if the connection idle time is greater than or equal to minEvictableIdleTimeMillis.
|
|
|
|
|
spring.datasource.timeBetweenConnectErrorMillis=60000
|
|
|
|
|
|
|
|
|
|
# the longest time a connection remains idle without being evicted, in milliseconds
|
|
|
|
|
spring.datasource.minEvictableIdleTimeMillis=300000
|
|
|
|
|
|
|
|
|
|
#the SQL used to check whether the connection is valid requires a query statement. If validation Query is null, testOnBorrow, testOnReturn, and testWhileIdle will not work.
|
|
|
|
|
spring.datasource.validationQuery=SELECT 1
|
|
|
|
|
#check whether the connection is valid for timeout, in seconds
|
|
|
|
|
spring.datasource.validationQueryTimeout=3
|
|
|
|
|
|
|
|
|
|
# when applying for a connection, if it is detected that the connection is idle longer than time Between Eviction Runs Millis,
|
|
|
|
|
# validation Query is performed to check whether the connection is valid
|
|
|
|
|
spring.datasource.testWhileIdle=true
|
|
|
|
|
|
|
|
|
|
#execute validation to check if the connection is valid when applying for a connection
|
|
|
|
|
spring.datasource.testOnBorrow=true
|
|
|
|
|
#execute validation to check if the connection is valid when the connection is returned
|
|
|
|
|
spring.datasource.testOnReturn=false
|
|
|
|
|
spring.datasource.defaultAutoCommit=true
|
|
|
|
|
spring.datasource.keepAlive=true
|
|
|
|
|
|
|
|
|
|
# open PSCache, specify count PSCache for every connection
|
|
|
|
|
spring.datasource.poolPreparedStatements=true
|
|
|
|
|
spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### escheduler-server
|
|
|
|
|
|
|
|
|
|
master配置文件
|
|
|
|
|
|
|
|
|
|
- master.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# master execute thread num
|
|
|
|
|
master.exec.threads=100
|
|
|
|
|
|
|
|
|
|
# master execute task number in parallel
|
|
|
|
|
master.exec.task.number=20
|
|
|
|
|
|
|
|
|
|
# master heartbeat interval
|
|
|
|
|
master.heartbeat.interval=10
|
|
|
|
|
|
|
|
|
|
# master commit task retry times
|
|
|
|
|
master.task.commit.retryTimes=5
|
|
|
|
|
|
|
|
|
|
# master commit task interval
|
|
|
|
|
master.task.commit.interval=100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only less than cpu avg load, master server can work. default value : the number of cpu cores * 2
|
|
|
|
|
master.max.cpuload.avg=10
|
|
|
|
|
|
|
|
|
|
# only larger than reserved memory, master server can work. default value : physical memory * 1/10, unit is G.
|
|
|
|
|
master.reserved.memory=1
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
worker配置文件
|
|
|
|
|
|
|
|
|
|
- worker.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# worker execute thread num
|
|
|
|
|
worker.exec.threads=100
|
|
|
|
|
|
|
|
|
|
# worker heartbeat interval
|
|
|
|
|
worker.heartbeat.interval=10
|
|
|
|
|
|
|
|
|
|
# submit the number of tasks at a time
|
|
|
|
|
worker.fetch.task.num = 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only less than cpu avg load, worker server can work. default value : the number of cpu cores * 2
|
|
|
|
|
worker.max.cpuload.avg=10
|
|
|
|
|
|
|
|
|
|
# only larger than reserved memory, worker server can work. default value : physical memory * 1/6, unit is G.
|
|
|
|
|
worker.reserved.memory=1
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### escheduler-api
|
|
|
|
|
|
|
|
|
|
web配置文件
|
|
|
|
|
|
|
|
|
|
- application.properties
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# server port
|
|
|
|
|
server.port=12345
|
|
|
|
|
|
|
|
|
|
# session config
|
|
|
|
|
server.session.timeout=7200
|
|
|
|
|
|
|
|
|
|
server.context-path=/escheduler/
|
|
|
|
|
|
|
|
|
|
# file size limit for upload
|
|
|
|
|
spring.http.multipart.max-file-size=1024MB
|
|
|
|
|
spring.http.multipart.max-request-size=1024MB
|
|
|
|
|
|
|
|
|
|
# post content
|
|
|
|
|
server.max-http-post-size=5000000
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 伪分布式部署
|
|
|
|
|
|
|
|
|
|
### 1,创建部署用户
|
|
|
|
|
|
|
|
|
|
如上 **创建部署用户**
|
|
|
|
|
|
|
|
|
|
### 2,根据实际需求来创建HDFS根路径
|
|
|
|
|
|
|
|
|
|
根据 **common/common.properties** 中 **hdfs.startup.state** 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 **owner** 修改为**部署用户**,否则忽略此步骤
|
|
|
|
|
|
|
|
|
|
### 3,项目编译
|
|
|
|
|
|
|
|
|
|
如上进行 **项目编译**
|
|
|
|
|
|
|
|
|
|
### 4,修改配置文件
|
|
|
|
|
|
|
|
|
|
根据 **配置文件说明** 修改配置文件和 **环境变量** 文件
|
|
|
|
|
|
|
|
|
|
### 5,创建目录并将环境变量文件复制到指定目录
|
|
|
|
|
|
|
|
|
|
- 创建 **common/common.properties** 下的data.basedir.path、data.download.basedir.path和process.exec.basepath路径
|
|
|
|
|
|
|
|
|
|
- 将**.escheduler_env.sh** 和 **escheduler_env.py** 两个环境变量文件复制到 **common/common.properties**配置的**escheduler.env.path** 和 **escheduler.env.py** 的目录下,并将 **owner** 修改为**部署用户**
|
|
|
|
|
|
|
|
|
|
### 6,启停服务
|
|
|
|
|
|
|
|
|
|
* 启停Master
|
|
|
|
|
|
|
|
|
|
```启动master
|
|
|
|
|
sh ./bin/escheduler-daemon.sh start master-server
|
|
|
|
|
sh ./bin/escheduler-daemon.sh stop master-server
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
* 启停Worker
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
sh ./bin/escheduler-daemon.sh start worker-server
|
|
|
|
|
sh ./bin/escheduler-daemon.sh stop worker-server
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
* 启停Api
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
sh ./bin/escheduler-daemon.sh start api-server
|
|
|
|
|
sh ./bin/escheduler-daemon.sh stop api-server
|
|
|
|
|
```
|
|
|
|
|
* 启停Logger
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
sh ./bin/escheduler-daemon.sh start logger-server
|
|
|
|
|
sh ./bin/escheduler-daemon.sh stop logger-server
|
|
|
|
|
```
|
|
|
|
|
* 启停Alert
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
sh ./bin/escheduler-daemon.sh start alert-server
|
|
|
|
|
sh ./bin/escheduler-daemon.sh stop alert-server
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 分布式部署
|
|
|
|
|
|
|
|
|
|
### 1,创建部署用户
|
|
|
|
|
|
|
|
|
|
- 在需要部署调度的机器上如上 **创建部署用户**
|
|
|
|
|
- [将 **主机器** 和各个其它机器SSH打通](https://blog.csdn.net/thinkmore1314/article/details/22489203)
|
|
|
|
|
|
|
|
|
|
### 2,根据实际需求来创建HDFS根路径
|
|
|
|
|
|
|
|
|
|
根据 **common/common.properties** 中 **hdfs.startup.state** 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 **owner** 修改为**部署用户**,否则忽略此步骤
|
|
|
|
|
|
|
|
|
|
### 3,项目编译
|
|
|
|
|
|
|
|
|
|
如上进行 **项目编译**
|
|
|
|
|
|
|
|
|
|
### 4,将环境变量文件复制到指定目录
|
|
|
|
|
|
|
|
|
|
将**.escheduler_env.sh** 和 **escheduler_env.py** 两个环境变量文件复制到 **common/common.properties**配置的**escheduler.env.path** 和 **escheduler.env.py** 的目录下,并将 **owner** 修改为**部署用户**
|
|
|
|
|
|
|
|
|
|
### 5,修改 install.sh
|
|
|
|
|
|
|
|
|
|
修改 install.sh 中变量的值,替换成自身业务所需的值
|
|
|
|
|
|
|
|
|
|
### 6,一键部署
|
|
|
|
|
|
|
|
|
|
- 安装 pip install kazoo
|
|
|
|
|
|
|
|
|
|
- 使用部署用户 sh install.sh 一键部署
|
|
|
|
|
|
|
|
|
|
- 注意:scp_hosts.sh 里 `tar -zxvf $workDir/../escheduler-1.0.0.tar.gz -C $installPath` 中的版本号(1.0.0)需要执行前手动替换成对应的版本号
|
|
|
|
|
|
|
|
|
|
## 服务监控
|
|
|
|
|
|
|
|
|
|
monitor_server.py 脚本是监听,master和worker服务挂掉重启的脚本
|
|
|
|
|
|
|
|
|
|
注意:在全部服务都启动之后启动
|
|
|
|
|
|
|
|
|
|
nohup python -u monitor_server.py > nohup.out 2>&1 &
|
|
|
|
|
|
|
|
|
|
## 日志查看
|
|
|
|
|
日志统一存放于指定文件夹内
|
|
|
|
|
|
|
|
|
|
```日志路径
|
|
|
|
|
logs/
|
|
|
|
|
├── escheduler-alert-server.log
|
|
|
|
|
├── escheduler-master-server.log
|
|
|
|
|
|—— escheduler-worker-server.log
|
|
|
|
|
|—— escheduler-api-server.log
|
|
|
|
|
|—— escheduler-logger-server.log
|
|
|
|
|
```
|