!(function () {
    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    /**
     * CryptoJS core components.
     */
    BI.CRYPT_TYPE = BI.CRYPT_TYPE || {};
    BI.CRYPT_TYPE.AES = "aes";

    var CryptoJS = CryptoJS || (function (Math, undefined) {
        /**
         * CryptoJS namespace.
         */
        var C = {};

        /**
         * Library namespace.
         */
        var C_lib = C.lib = {};

        /**
         * Base object for prototypal inheritance.
         */
        var Base = C_lib.Base = (function () {
            function F () {
            }

            return {
                /**
                 * Creates a new object that inherits from this object.
                 *
                 * @param {Object} overrides Properties to copy into the new object.
                 *
                 * @return {Object} The new object.
                 *
                 * @static
                 *
                 * @example
                 *
                 *     var MyType = CryptoJS.lib.Base.extend({
                 *         field: 'value',
                 *
                 *         method: function () {
                 *         }
                 *     });
                 */
                extend: function (overrides) {
                    // Spawn
                    F.prototype = this;
                    var subtype = new F();

                    // Augment
                    if (overrides) {
                        subtype.mixIn(overrides);
                    }

                    // Create default initializer
                    if (!subtype.hasOwnProperty('init')) {
                        subtype.init = function () {
                            subtype.$super.init.apply(this, arguments);
                        };
                    }

                    // Initializer's prototype is the subtype object
                    subtype.init.prototype = subtype;

                    // Reference supertype
                    subtype.$super = this;

                    return subtype;
                },

                /**
                 * Extends this object and runs the init method.
                 * Arguments to create() will be passed to init().
                 *
                 * @return {Object} The new object.
                 *
                 * @static
                 *
                 * @example
                 *
                 *     var instance = MyType.create();
                 */
                create: function () {
                    var instance = this.extend();
                    instance.init.apply(instance, arguments);

                    return instance;
                },

                /**
                 * Initializes a newly created object.
                 * Override this method to add some logic when your objects are created.
                 *
                 * @example
                 *
                 *     var MyType = CryptoJS.lib.Base.extend({
                 *         init: function () {
                 *             // ...
                 *         }
                 *     });
                 */
                init: function () {
                },

                /**
                 * Copies properties into this object.
                 *
                 * @param {Object} properties The properties to mix in.
                 *
                 * @example
                 *
                 *     MyType.mixIn({
                 *         field: 'value'
                 *     });
                 */
                mixIn: function (properties) {
                    for (var propertyName in properties) {
                        if (properties.hasOwnProperty(propertyName)) {
                            this[propertyName] = properties[propertyName];
                        }
                    }

                    // IE won't copy toString using the loop above
                    if (properties.hasOwnProperty('toString')) {
                        this.toString = properties.toString;
                    }
                },

                /**
                 * Creates a copy of this object.
                 *
                 * @return {Object} The clone.
                 *
                 * @example
                 *
                 *     var clone = instance.clone();
                 */
                clone: function () {
                    return this.init.prototype.extend(this);
                }
            };
        }());

        /**
         * An array of 32-bit words.
         *
         * @property {Array} words The array of 32-bit words.
         * @property {number} sigBytes The number of significant bytes in this word array.
         */
        var WordArray = C_lib.WordArray = Base.extend({
            /**
             * Initializes a newly created word array.
             *
             * @param {Array} words (Optional) An array of 32-bit words.
             * @param {number} sigBytes (Optional) The number of significant bytes in the words.
             *
             * @example
             *
             *     var wordArray = CryptoJS.lib.WordArray.create();
             *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
             *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
             */
            init: function (words, sigBytes) {
                words = this.words = words || [];

                if (sigBytes != undefined) {
                    this.sigBytes = sigBytes;
                } else {
                    this.sigBytes = words.length * 4;
                }
            },

            /**
             * Converts this word array to a string.
             *
             * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
             *
             * @return {string} The stringified word array.
             *
             * @example
             *
             *     var string = wordArray + '';
             *     var string = wordArray.toString();
             *     var string = wordArray.toString(CryptoJS.enc.Utf8);
             */
            toString: function (encoder) {
                return (encoder || Hex).stringify(this);
            },

            /**
             * Concatenates a word array to this word array.
             *
             * @param {WordArray} wordArray The word array to append.
             *
             * @return {WordArray} This word array.
             *
             * @example
             *
             *     wordArray1.concat(wordArray2);
             */
            concat: function (wordArray) {
                // Shortcuts
                var thisWords = this.words;
                var thatWords = wordArray.words;
                var thisSigBytes = this.sigBytes;
                var thatSigBytes = wordArray.sigBytes;

                // Clamp excess bits
                this.clamp();

                // Concat
                if (thisSigBytes % 4) {
                    // Copy one byte at a time
                    for (var i = 0; i < thatSigBytes; i++) {
                        var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                        thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
                    }
                } else if (thatWords.length > 0xffff) {
                    // Copy one word at a time
                    for (var i = 0; i < thatSigBytes; i += 4) {
                        thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
                    }
                } else {
                    // Copy all words at once
                    thisWords.push.apply(thisWords, thatWords);
                }
                this.sigBytes += thatSigBytes;

                // Chainable
                return this;
            },

            /**
             * Removes insignificant bits.
             *
             * @example
             *
             *     wordArray.clamp();
             */
            clamp: function () {
                // Shortcuts
                var words = this.words;
                var sigBytes = this.sigBytes;

                // Clamp
                words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
                words.length = Math.ceil(sigBytes / 4);
            },

            /**
             * Creates a copy of this word array.
             *
             * @return {WordArray} The clone.
             *
             * @example
             *
             *     var clone = wordArray.clone();
             */
            clone: function () {
                var clone = Base.clone.call(this);
                clone.words = this.words.slice(0);

                return clone;
            },

            /**
             * Creates a word array filled with random bytes.
             *
             * @param {number} nBytes The number of random bytes to generate.
             *
             * @return {WordArray} The random word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.lib.WordArray.random(16);
             */
            random: function (nBytes) {
                var words = [];
                for (var i = 0; i < nBytes; i += 4) {
                    words.push((Math.random() * 0x100000000) | 0);
                }

                return new WordArray.init(words, nBytes);
            }
        });

        /**
         * Encoder namespace.
         */
        var C_enc = C.enc = {};

        /**
         * Hex encoding strategy.
         */
        var Hex = C_enc.Hex = {
            /**
             * Converts a word array to a hex string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The hex string.
             *
             * @static
             *
             * @example
             *
             *     var hexString = CryptoJS.enc.Hex.stringify(wordArray);
             */
            stringify: function (wordArray) {
                // Shortcuts
                var words = wordArray.words;
                var sigBytes = wordArray.sigBytes;

                // Convert
                var hexChars = [];
                for (var i = 0; i < sigBytes; i++) {
                    var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                    hexChars.push((bite >>> 4).toString(16));
                    hexChars.push((bite & 0x0f).toString(16));
                }

                return hexChars.join('');
            },

            /**
             * Converts a hex string to a word array.
             *
             * @param {string} hexStr The hex string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Hex.parse(hexString);
             */
            parse: function (hexStr) {
                // Shortcut
                var hexStrLength = hexStr.length;

                // Convert
                var words = [];
                for (var i = 0; i < hexStrLength; i += 2) {
                    words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
                }

                return new WordArray.init(words, hexStrLength / 2);
            }
        };

        /**
         * Latin1 encoding strategy.
         */
        var Latin1 = C_enc.Latin1 = {
            /**
             * Converts a word array to a Latin1 string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The Latin1 string.
             *
             * @static
             *
             * @example
             *
             *     var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
             */
            stringify: function (wordArray) {
                // Shortcuts
                var words = wordArray.words;
                var sigBytes = wordArray.sigBytes;

                // Convert
                var latin1Chars = [];
                for (var i = 0; i < sigBytes; i++) {
                    var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                    latin1Chars.push(String.fromCharCode(bite));
                }

                return latin1Chars.join('');
            },

            /**
             * Converts a Latin1 string to a word array.
             *
             * @param {string} latin1Str The Latin1 string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
             */
            parse: function (latin1Str) {
                // Shortcut
                var latin1StrLength = latin1Str.length;

                // Convert
                var words = [];
                for (var i = 0; i < latin1StrLength; i++) {
                    words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
                }

                return new WordArray.init(words, latin1StrLength);
            }
        };

        /**
         * UTF-8 encoding strategy.
         */
        var Utf8 = C_enc.Utf8 = {
            /**
             * Converts a word array to a UTF-8 string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The UTF-8 string.
             *
             * @static
             *
             * @example
             *
             *     var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
             */
            stringify: function (wordArray) {
                try {
                    return decodeURIComponent(escape(Latin1.stringify(wordArray)));
                } catch (e) {
                    throw new Error('Malformed UTF-8 data');
                }
            },

            /**
             * Converts a UTF-8 string to a word array.
             *
             * @param {string} utf8Str The UTF-8 string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
             */
            parse: function (utf8Str) {
                return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
            }
        };

        /**
         * Abstract buffered block algorithm template.
         *
         * The property blockSize must be implemented in a concrete subtype.
         *
         * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
         */
        var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
            /**
             * Resets this block algorithm's data buffer to its initial state.
             *
             * @example
             *
             *     bufferedBlockAlgorithm.reset();
             */
            reset: function () {
                // Initial values
                this._data = new WordArray.init();
                this._nDataBytes = 0;
            },

            /**
             * Adds new data to this block algorithm's buffer.
             *
             * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
             *
             * @example
             *
             *     bufferedBlockAlgorithm._append('data');
             *     bufferedBlockAlgorithm._append(wordArray);
             */
            _append: function (data) {
                // Convert string to WordArray, else assume WordArray already
                if (typeof data == 'string') {
                    data = Utf8.parse(data);
                }

                // Append
                this._data.concat(data);
                this._nDataBytes += data.sigBytes;
            },

            /**
             * Processes available data blocks.
             *
             * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
             *
             * @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
             *
             * @return {WordArray} The processed data.
             *
             * @example
             *
             *     var processedData = bufferedBlockAlgorithm._process();
             *     var processedData = bufferedBlockAlgorithm._process(!!'flush');
             */
            _process: function (doFlush) {
                // Shortcuts
                var data = this._data;
                var dataWords = data.words;
                var dataSigBytes = data.sigBytes;
                var blockSize = this.blockSize;
                var blockSizeBytes = blockSize * 4;

                // Count blocks ready
                var nBlocksReady = dataSigBytes / blockSizeBytes;
                if (doFlush) {
                    // Round up to include partial blocks
                    nBlocksReady = Math.ceil(nBlocksReady);
                } else {
                    // Round down to include only full blocks,
                    // less the number of blocks that must remain in the buffer
                    nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
                }

                // Count words ready
                var nWordsReady = nBlocksReady * blockSize;

                // Count bytes ready
                var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);

                // Process blocks
                if (nWordsReady) {
                    for (var offset = 0; offset < nWordsReady; offset += blockSize) {
                        // Perform concrete-algorithm logic
                        this._doProcessBlock(dataWords, offset);
                    }

                    // Remove processed words
                    var processedWords = dataWords.splice(0, nWordsReady);
                    data.sigBytes -= nBytesReady;
                }

                // Return processed words
                return new WordArray.init(processedWords, nBytesReady);
            },

            /**
             * Creates a copy of this object.
             *
             * @return {Object} The clone.
             *
             * @example
             *
             *     var clone = bufferedBlockAlgorithm.clone();
             */
            clone: function () {
                var clone = Base.clone.call(this);
                clone._data = this._data.clone();

                return clone;
            },

            _minBufferSize: 0
        });

        /**
         * Abstract hasher template.
         *
         * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
         */
        var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
            /**
             * Configuration options.
             */
            cfg: Base.extend(),

            /**
             * Initializes a newly created hasher.
             *
             * @param {Object} cfg (Optional) The configuration options to use for this hash computation.
             *
             * @example
             *
             *     var hasher = CryptoJS.algo.SHA256.create();
             */
            init: function (cfg) {
                // Apply config defaults
                this.cfg = this.cfg.extend(cfg);

                // Set initial values
                this.reset();
            },

            /**
             * Resets this hasher to its initial state.
             *
             * @example
             *
             *     hasher.reset();
             */
            reset: function () {
                // Reset data buffer
                BufferedBlockAlgorithm.reset.call(this);

                // Perform concrete-hasher logic
                this._doReset();
            },

            /**
             * Updates this hasher with a message.
             *
             * @param {WordArray|string} messageUpdate The message to append.
             *
             * @return {Hasher} This hasher.
             *
             * @example
             *
             *     hasher.update('message');
             *     hasher.update(wordArray);
             */
            update: function (messageUpdate) {
                // Append
                this._append(messageUpdate);

                // Update the hash
                this._process();

                // Chainable
                return this;
            },

            /**
             * Finalizes the hash computation.
             * Note that the finalize operation is effectively a destructive, read-once operation.
             *
             * @param {WordArray|string} messageUpdate (Optional) A final message update.
             *
             * @return {WordArray} The hash.
             *
             * @example
             *
             *     var hash = hasher.finalize();
             *     var hash = hasher.finalize('message');
             *     var hash = hasher.finalize(wordArray);
             */
            finalize: function (messageUpdate) {
                // Final message update
                if (messageUpdate) {
                    this._append(messageUpdate);
                }

                // Perform concrete-hasher logic
                var hash = this._doFinalize();

                return hash;
            },

            blockSize: 512 / 32,

            /**
             * Creates a shortcut function to a hasher's object interface.
             *
             * @param {Hasher} hasher The hasher to create a helper for.
             *
             * @return {Function} The shortcut function.
             *
             * @static
             *
             * @example
             *
             *     var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
             */
            _createHelper: function (hasher) {
                return function (message, cfg) {
                    return new hasher.init(cfg).finalize(message);
                };
            },

            /**
             * Creates a shortcut function to the HMAC's object interface.
             *
             * @param {Hasher} hasher The hasher to use in this HMAC helper.
             *
             * @return {Function} The shortcut function.
             *
             * @static
             *
             * @example
             *
             *     var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
             */
            _createHmacHelper: function (hasher) {
                return function (message, key) {
                    return new C_algo.HMAC.init(hasher, key).finalize(message);
                };
            }
        });

        /**
         * Algorithm namespace.
         */
        var C_algo = C.algo = {};

        return C;
    }(Math));

    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var C_enc = C.enc;

        /**
         * Base64 encoding strategy.
         */
        var Base64 = C_enc.Base64 = {
            /**
             * Converts a word array to a Base64 string.
             *
             * @param {WordArray} wordArray The word array.
             *
             * @return {string} The Base64 string.
             *
             * @static
             *
             * @example
             *
             *     var base64String = CryptoJS.enc.Base64.stringify(wordArray);
             */
            stringify: function (wordArray) {
                // Shortcuts
                var words = wordArray.words;
                var sigBytes = wordArray.sigBytes;
                var map = this._map;

                // Clamp excess bits
                wordArray.clamp();

                // Convert
                var base64Chars = [];
                for (var i = 0; i < sigBytes; i += 3) {
                    var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                    var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
                    var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;

                    var triplet = (byte1 << 16) | (byte2 << 8) | byte3;

                    for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
                        base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
                    }
                }

                // Add padding
                var paddingChar = map.charAt(64);
                if (paddingChar) {
                    while (base64Chars.length % 4) {
                        base64Chars.push(paddingChar);
                    }
                }

                return base64Chars.join('');
            },

            /**
             * Converts a Base64 string to a word array.
             *
             * @param {string} base64Str The Base64 string.
             *
             * @return {WordArray} The word array.
             *
             * @static
             *
             * @example
             *
             *     var wordArray = CryptoJS.enc.Base64.parse(base64String);
             */
            parse: function (base64Str) {
                // Shortcuts
                var base64StrLength = base64Str.length;
                var map = this._map;

                // Ignore padding
                var paddingChar = map.charAt(64);
                if (paddingChar) {
                    var paddingIndex = base64Str.indexOf(paddingChar);
                    if (paddingIndex != -1) {
                        base64StrLength = paddingIndex;
                    }
                }

                // Convert
                var words = [];
                var nBytes = 0;
                for (var i = 0; i < base64StrLength; i++) {
                    if (i % 4) {
                        var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
                        var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
                        words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
                        nBytes++;
                    }
                }

                return WordArray.create(words, nBytes);
            },

            _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
        };
    }());

    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    (function (Math) {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var WordArray = C_lib.WordArray;
        var Hasher = C_lib.Hasher;
        var C_algo = C.algo;

        // Constants table
        var T = [];

        // Compute constants
        (function () {
            for (var i = 0; i < 64; i++) {
                T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0;
            }
        }());

        /**
         * MD5 hash algorithm.
         */
        var MD5 = C_algo.MD5 = Hasher.extend({
            _doReset: function () {
                this._hash = new WordArray.init([
                    0x67452301, 0xefcdab89,
                    0x98badcfe, 0x10325476
                ]);
            },

            _doProcessBlock: function (M, offset) {
                // Swap endian
                for (var i = 0; i < 16; i++) {
                    // Shortcuts
                    var offset_i = offset + i;
                    var M_offset_i = M[offset_i];

                    M[offset_i] = (
                        (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
                        (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
                    );
                }

                // Shortcuts
                var H = this._hash.words;

                var M_offset_0 = M[offset + 0];
                var M_offset_1 = M[offset + 1];
                var M_offset_2 = M[offset + 2];
                var M_offset_3 = M[offset + 3];
                var M_offset_4 = M[offset + 4];
                var M_offset_5 = M[offset + 5];
                var M_offset_6 = M[offset + 6];
                var M_offset_7 = M[offset + 7];
                var M_offset_8 = M[offset + 8];
                var M_offset_9 = M[offset + 9];
                var M_offset_10 = M[offset + 10];
                var M_offset_11 = M[offset + 11];
                var M_offset_12 = M[offset + 12];
                var M_offset_13 = M[offset + 13];
                var M_offset_14 = M[offset + 14];
                var M_offset_15 = M[offset + 15];

                // Working varialbes
                var a = H[0];
                var b = H[1];
                var c = H[2];
                var d = H[3];

                // Computation
                a = FF(a, b, c, d, M_offset_0, 7, T[0]);
                d = FF(d, a, b, c, M_offset_1, 12, T[1]);
                c = FF(c, d, a, b, M_offset_2, 17, T[2]);
                b = FF(b, c, d, a, M_offset_3, 22, T[3]);
                a = FF(a, b, c, d, M_offset_4, 7, T[4]);
                d = FF(d, a, b, c, M_offset_5, 12, T[5]);
                c = FF(c, d, a, b, M_offset_6, 17, T[6]);
                b = FF(b, c, d, a, M_offset_7, 22, T[7]);
                a = FF(a, b, c, d, M_offset_8, 7, T[8]);
                d = FF(d, a, b, c, M_offset_9, 12, T[9]);
                c = FF(c, d, a, b, M_offset_10, 17, T[10]);
                b = FF(b, c, d, a, M_offset_11, 22, T[11]);
                a = FF(a, b, c, d, M_offset_12, 7, T[12]);
                d = FF(d, a, b, c, M_offset_13, 12, T[13]);
                c = FF(c, d, a, b, M_offset_14, 17, T[14]);
                b = FF(b, c, d, a, M_offset_15, 22, T[15]);

                a = GG(a, b, c, d, M_offset_1, 5, T[16]);
                d = GG(d, a, b, c, M_offset_6, 9, T[17]);
                c = GG(c, d, a, b, M_offset_11, 14, T[18]);
                b = GG(b, c, d, a, M_offset_0, 20, T[19]);
                a = GG(a, b, c, d, M_offset_5, 5, T[20]);
                d = GG(d, a, b, c, M_offset_10, 9, T[21]);
                c = GG(c, d, a, b, M_offset_15, 14, T[22]);
                b = GG(b, c, d, a, M_offset_4, 20, T[23]);
                a = GG(a, b, c, d, M_offset_9, 5, T[24]);
                d = GG(d, a, b, c, M_offset_14, 9, T[25]);
                c = GG(c, d, a, b, M_offset_3, 14, T[26]);
                b = GG(b, c, d, a, M_offset_8, 20, T[27]);
                a = GG(a, b, c, d, M_offset_13, 5, T[28]);
                d = GG(d, a, b, c, M_offset_2, 9, T[29]);
                c = GG(c, d, a, b, M_offset_7, 14, T[30]);
                b = GG(b, c, d, a, M_offset_12, 20, T[31]);

                a = HH(a, b, c, d, M_offset_5, 4, T[32]);
                d = HH(d, a, b, c, M_offset_8, 11, T[33]);
                c = HH(c, d, a, b, M_offset_11, 16, T[34]);
                b = HH(b, c, d, a, M_offset_14, 23, T[35]);
                a = HH(a, b, c, d, M_offset_1, 4, T[36]);
                d = HH(d, a, b, c, M_offset_4, 11, T[37]);
                c = HH(c, d, a, b, M_offset_7, 16, T[38]);
                b = HH(b, c, d, a, M_offset_10, 23, T[39]);
                a = HH(a, b, c, d, M_offset_13, 4, T[40]);
                d = HH(d, a, b, c, M_offset_0, 11, T[41]);
                c = HH(c, d, a, b, M_offset_3, 16, T[42]);
                b = HH(b, c, d, a, M_offset_6, 23, T[43]);
                a = HH(a, b, c, d, M_offset_9, 4, T[44]);
                d = HH(d, a, b, c, M_offset_12, 11, T[45]);
                c = HH(c, d, a, b, M_offset_15, 16, T[46]);
                b = HH(b, c, d, a, M_offset_2, 23, T[47]);

                a = II(a, b, c, d, M_offset_0, 6, T[48]);
                d = II(d, a, b, c, M_offset_7, 10, T[49]);
                c = II(c, d, a, b, M_offset_14, 15, T[50]);
                b = II(b, c, d, a, M_offset_5, 21, T[51]);
                a = II(a, b, c, d, M_offset_12, 6, T[52]);
                d = II(d, a, b, c, M_offset_3, 10, T[53]);
                c = II(c, d, a, b, M_offset_10, 15, T[54]);
                b = II(b, c, d, a, M_offset_1, 21, T[55]);
                a = II(a, b, c, d, M_offset_8, 6, T[56]);
                d = II(d, a, b, c, M_offset_15, 10, T[57]);
                c = II(c, d, a, b, M_offset_6, 15, T[58]);
                b = II(b, c, d, a, M_offset_13, 21, T[59]);
                a = II(a, b, c, d, M_offset_4, 6, T[60]);
                d = II(d, a, b, c, M_offset_11, 10, T[61]);
                c = II(c, d, a, b, M_offset_2, 15, T[62]);
                b = II(b, c, d, a, M_offset_9, 21, T[63]);

                // Intermediate hash value
                H[0] = (H[0] + a) | 0;
                H[1] = (H[1] + b) | 0;
                H[2] = (H[2] + c) | 0;
                H[3] = (H[3] + d) | 0;
            },

            _doFinalize: function () {
                // Shortcuts
                var data = this._data;
                var dataWords = data.words;

                var nBitsTotal = this._nDataBytes * 8;
                var nBitsLeft = data.sigBytes * 8;

                // Add padding
                dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);

                var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000);
                var nBitsTotalL = nBitsTotal;
                dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = (
                    (((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
                    (((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00)
                );
                dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
                    (((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
                    (((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00)
                );

                data.sigBytes = (dataWords.length + 1) * 4;

                // Hash final blocks
                this._process();

                // Shortcuts
                var hash = this._hash;
                var H = hash.words;

                // Swap endian
                for (var i = 0; i < 4; i++) {
                    // Shortcut
                    var H_i = H[i];

                    H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
                        (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
                }

                // Return final computed hash
                return hash;
            },

            clone: function () {
                var clone = Hasher.clone.call(this);
                clone._hash = this._hash.clone();

                return clone;
            }
        });

        function FF (a, b, c, d, x, s, t) {
            var n = a + ((b & c) | (~b & d)) + x + t;
            return ((n << s) | (n >>> (32 - s))) + b;
        }

        function GG (a, b, c, d, x, s, t) {
            var n = a + ((b & d) | (c & ~d)) + x + t;
            return ((n << s) | (n >>> (32 - s))) + b;
        }

        function HH (a, b, c, d, x, s, t) {
            var n = a + (b ^ c ^ d) + x + t;
            return ((n << s) | (n >>> (32 - s))) + b;
        }

        function II (a, b, c, d, x, s, t) {
            var n = a + (c ^ (b | ~d)) + x + t;
            return ((n << s) | (n >>> (32 - s))) + b;
        }

        /**
         * Shortcut function to the hasher's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         *
         * @return {WordArray} The hash.
         *
         * @static
         *
         * @example
         *
         *     var hash = CryptoJS.MD5('message');
         *     var hash = CryptoJS.MD5(wordArray);
         */
        C.MD5 = Hasher._createHelper(MD5);

        /**
         * Shortcut function to the HMAC's object interface.
         *
         * @param {WordArray|string} message The message to hash.
         * @param {WordArray|string} key The secret key.
         *
         * @return {WordArray} The HMAC.
         *
         * @static
         *
         * @example
         *
         *     var hmac = CryptoJS.HmacMD5(message, key);
         */
        C.HmacMD5 = Hasher._createHmacHelper(MD5);
    }(Math));

    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Base = C_lib.Base;
        var WordArray = C_lib.WordArray;
        var C_algo = C.algo;
        var MD5 = C_algo.MD5;

        /**
         * This key derivation function is meant to conform with EVP_BytesToKey.
         * www.openssl.org/docs/crypto/EVP_BytesToKey.html
         */
        var EvpKDF = C_algo.EvpKDF = Base.extend({
            /**
             * Configuration options.
             *
             * @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
             * @property {Hasher} hasher The hash algorithm to use. Default: MD5
             * @property {number} iterations The number of iterations to perform. Default: 1
             */
            cfg: Base.extend({
                keySize: 128 / 32,
                hasher: MD5,
                iterations: 1
            }),

            /**
             * Initializes a newly created key derivation function.
             *
             * @param {Object} cfg (Optional) The configuration options to use for the derivation.
             *
             * @example
             *
             *     var kdf = CryptoJS.algo.EvpKDF.create();
             *     var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
             *     var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
             */
            init: function (cfg) {
                this.cfg = this.cfg.extend(cfg);
            },

            /**
             * Derives a key from a password.
             *
             * @param {WordArray|string} password The password.
             * @param {WordArray|string} salt A salt.
             *
             * @return {WordArray} The derived key.
             *
             * @example
             *
             *     var key = kdf.compute(password, salt);
             */
            compute: function (password, salt) {
                // Shortcut
                var cfg = this.cfg;

                // Init hasher
                var hasher = cfg.hasher.create();

                // Initial values
                var derivedKey = WordArray.create();

                // Shortcuts
                var derivedKeyWords = derivedKey.words;
                var keySize = cfg.keySize;
                var iterations = cfg.iterations;

                // Generate key
                while (derivedKeyWords.length < keySize) {
                    if (block) {
                        hasher.update(block);
                    }
                    var block = hasher.update(password).finalize(salt);
                    hasher.reset();

                    // Iterations
                    for (var i = 1; i < iterations; i++) {
                        block = hasher.finalize(block);
                        hasher.reset();
                    }

                    derivedKey.concat(block);
                }
                derivedKey.sigBytes = keySize * 4;

                return derivedKey;
            }
        });

        /**
         * Derives a key from a password.
         *
         * @param {WordArray|string} password The password.
         * @param {WordArray|string} salt A salt.
         * @param {Object} cfg (Optional) The configuration options to use for this computation.
         *
         * @return {WordArray} The derived key.
         *
         * @static
         *
         * @example
         *
         *     var key = CryptoJS.EvpKDF(password, salt);
         *     var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
         *     var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
         */
        C.EvpKDF = function (password, salt, cfg) {
            return EvpKDF.create(cfg).compute(password, salt);
        };
    }());


    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    /**
     * Cipher core components.
     */
    CryptoJS.lib.Cipher || (function (undefined) {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var Base = C_lib.Base;
        var WordArray = C_lib.WordArray;
        var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
        var C_enc = C.enc;
        var Utf8 = C_enc.Utf8;
        var Base64 = C_enc.Base64;
        var C_algo = C.algo;
        var EvpKDF = C_algo.EvpKDF;

        /**
         * Abstract base cipher template.
         *
         * @property {number} keySize This cipher's key size. Default: 4 (128 bits)
         * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
         * @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
         * @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
         */
        var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
            /**
             * Configuration options.
             *
             * @property {WordArray} iv The IV to use for this operation.
             */
            cfg: Base.extend(),

            /**
             * Creates this cipher in encryption mode.
             *
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {Cipher} A cipher instance.
             *
             * @static
             *
             * @example
             *
             *     var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
             */
            createEncryptor: function (key, cfg) {
                return this.create(this._ENC_XFORM_MODE, key, cfg);
            },

            /**
             * Creates this cipher in decryption mode.
             *
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {Cipher} A cipher instance.
             *
             * @static
             *
             * @example
             *
             *     var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
             */
            createDecryptor: function (key, cfg) {
                return this.create(this._DEC_XFORM_MODE, key, cfg);
            },

            /**
             * Initializes a newly created cipher.
             *
             * @param {number} xformMode Either the encryption or decryption transormation mode constant.
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @example
             *
             *     var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
             */
            init: function (xformMode, key, cfg) {
                // Apply config defaults
                this.cfg = this.cfg.extend(cfg);

                // Store transform mode and key
                this._xformMode = xformMode;
                this._key = key;

                // Set initial values
                this.reset();
            },

            /**
             * Resets this cipher to its initial state.
             *
             * @example
             *
             *     cipher.reset();
             */
            reset: function () {
                // Reset data buffer
                BufferedBlockAlgorithm.reset.call(this);

                // Perform concrete-cipher logic
                this._doReset();
            },

            /**
             * Adds data to be encrypted or decrypted.
             *
             * @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
             *
             * @return {WordArray} The data after processing.
             *
             * @example
             *
             *     var encrypted = cipher.process('data');
             *     var encrypted = cipher.process(wordArray);
             */
            process: function (dataUpdate) {
                // Append
                this._append(dataUpdate);

                // Process available blocks
                return this._process();
            },

            /**
             * Finalizes the encryption or decryption process.
             * Note that the finalize operation is effectively a destructive, read-once operation.
             *
             * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
             *
             * @return {WordArray} The data after final processing.
             *
             * @example
             *
             *     var encrypted = cipher.finalize();
             *     var encrypted = cipher.finalize('data');
             *     var encrypted = cipher.finalize(wordArray);
             */
            finalize: function (dataUpdate) {
                // Final data update
                if (dataUpdate) {
                    this._append(dataUpdate);
                }

                // Perform concrete-cipher logic
                var finalProcessedData = this._doFinalize();

                return finalProcessedData;
            },

            keySize: 128 / 32,

            ivSize: 128 / 32,

            _ENC_XFORM_MODE: 1,

            _DEC_XFORM_MODE: 2,

            /**
             * Creates shortcut functions to a cipher's object interface.
             *
             * @param {Cipher} cipher The cipher to create a helper for.
             *
             * @return {Object} An object with encrypt and decrypt shortcut functions.
             *
             * @static
             *
             * @example
             *
             *     var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
             */
            _createHelper: (function () {
                function selectCipherStrategy (key) {
                    if (typeof key == 'string') {
                        return PasswordBasedCipher;
                    } else {
                        return SerializableCipher;
                    }
                }

                return function (cipher) {
                    return {
                        encrypt: function (message, key, cfg) {
                            return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
                        },

                        decrypt: function (ciphertext, key, cfg) {
                            return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
                        }
                    };
                };
            }())
        });

        /**
         * Abstract base stream cipher template.
         *
         * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
         */
        var StreamCipher = C_lib.StreamCipher = Cipher.extend({
            _doFinalize: function () {
                // Process partial blocks
                var finalProcessedBlocks = this._process(!!'flush');

                return finalProcessedBlocks;
            },

            blockSize: 1
        });

        /**
         * Mode namespace.
         */
        var C_mode = C.mode = {};

        /**
         * Abstract base block cipher mode template.
         */
        var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
            /**
             * Creates this mode for encryption.
             *
             * @param {Cipher} cipher A block cipher instance.
             * @param {Array} iv The IV words.
             *
             * @static
             *
             * @example
             *
             *     var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
             */
            createEncryptor: function (cipher, iv) {
                return this.Encryptor.create(cipher, iv);
            },

            /**
             * Creates this mode for decryption.
             *
             * @param {Cipher} cipher A block cipher instance.
             * @param {Array} iv The IV words.
             *
             * @static
             *
             * @example
             *
             *     var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
             */
            createDecryptor: function (cipher, iv) {
                return this.Decryptor.create(cipher, iv);
            },

            /**
             * Initializes a newly created mode.
             *
             * @param {Cipher} cipher A block cipher instance.
             * @param {Array} iv The IV words.
             *
             * @example
             *
             *     var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
             */
            init: function (cipher, iv) {
                this._cipher = cipher;
                this._iv = iv;
            }
        });

        /**
         * Cipher Block Chaining mode.
         */
        var CBC = C_mode.CBC = (function () {
            /**
             * Abstract base CBC mode.
             */
            var CBC = BlockCipherMode.extend();

            /**
             * CBC encryptor.
             */
            CBC.Encryptor = CBC.extend({
                /**
                 * Processes the data block at offset.
                 *
                 * @param {Array} words The data words to operate on.
                 * @param {number} offset The offset where the block starts.
                 *
                 * @example
                 *
                 *     mode.processBlock(data.words, offset);
                 */
                processBlock: function (words, offset) {
                    // Shortcuts
                    var cipher = this._cipher;
                    var blockSize = cipher.blockSize;

                    // XOR and encrypt
                    xorBlock.call(this, words, offset, blockSize);
                    cipher.encryptBlock(words, offset);

                    // Remember this block to use with next block
                    this._prevBlock = words.slice(offset, offset + blockSize);
                }
            });

            /**
             * CBC decryptor.
             */
            CBC.Decryptor = CBC.extend({
                /**
                 * Processes the data block at offset.
                 *
                 * @param {Array} words The data words to operate on.
                 * @param {number} offset The offset where the block starts.
                 *
                 * @example
                 *
                 *     mode.processBlock(data.words, offset);
                 */
                processBlock: function (words, offset) {
                    // Shortcuts
                    var cipher = this._cipher;
                    var blockSize = cipher.blockSize;

                    // Remember this block to use with next block
                    var thisBlock = words.slice(offset, offset + blockSize);

                    // Decrypt and XOR
                    cipher.decryptBlock(words, offset);
                    xorBlock.call(this, words, offset, blockSize);

                    // This block becomes the previous block
                    this._prevBlock = thisBlock;
                }
            });

            function xorBlock (words, offset, blockSize) {
                // Shortcut
                var iv = this._iv;

                // Choose mixing block
                if (iv) {
                    var block = iv;

                    // Remove IV for subsequent blocks
                    this._iv = undefined;
                } else {
                    var block = this._prevBlock;
                }

                // XOR blocks
                for (var i = 0; i < blockSize; i++) {
                    words[offset + i] ^= block[i];
                }
            }

            return CBC;
        }());

        /**
         * Padding namespace.
         */
        var C_pad = C.pad = {};

        /**
         * PKCS #5/7 padding strategy.
         */
        var Pkcs7 = C_pad.Pkcs7 = {
            /**
             * Pads data using the algorithm defined in PKCS #5/7.
             *
             * @param {WordArray} data The data to pad.
             * @param {number} blockSize The multiple that the data should be padded to.
             *
             * @static
             *
             * @example
             *
             *     CryptoJS.pad.Pkcs7.pad(wordArray, 4);
             */
            pad: function (data, blockSize) {
                // Shortcut
                var blockSizeBytes = blockSize * 4;

                // Count padding bytes
                var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;

                // Create padding word
                var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;

                // Create padding
                var paddingWords = [];
                for (var i = 0; i < nPaddingBytes; i += 4) {
                    paddingWords.push(paddingWord);
                }
                var padding = WordArray.create(paddingWords, nPaddingBytes);

                // Add padding
                data.concat(padding);
            },

            /**
             * Unpads data that had been padded using the algorithm defined in PKCS #5/7.
             *
             * @param {WordArray} data The data to unpad.
             *
             * @static
             *
             * @example
             *
             *     CryptoJS.pad.Pkcs7.unpad(wordArray);
             */
            unpad: function (data) {
                // Get number of padding bytes from last byte
                var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;

                // Remove padding
                data.sigBytes -= nPaddingBytes;
            }
        };

        /**
         * Abstract base block cipher template.
         *
         * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
         */
        var BlockCipher = C_lib.BlockCipher = Cipher.extend({
            /**
             * Configuration options.
             *
             * @property {Mode} mode The block mode to use. Default: CBC
             * @property {Padding} padding The padding strategy to use. Default: Pkcs7
             */
            cfg: Cipher.cfg.extend({
                mode: CBC,
                padding: Pkcs7
            }),

            reset: function () {
                // Reset cipher
                Cipher.reset.call(this);

                // Shortcuts
                var cfg = this.cfg;
                var iv = cfg.iv;
                var mode = cfg.mode;

                // Reset block mode
                if (this._xformMode == this._ENC_XFORM_MODE) {
                    var modeCreator = mode.createEncryptor;
                } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
                    var modeCreator = mode.createDecryptor;

                    // Keep at least one block in the buffer for unpadding
                    this._minBufferSize = 1;
                }
                this._mode = modeCreator.call(mode, this, iv && iv.words);
            },

            _doProcessBlock: function (words, offset) {
                this._mode.processBlock(words, offset);
            },

            _doFinalize: function () {
                // Shortcut
                var padding = this.cfg.padding;

                // Finalize
                if (this._xformMode == this._ENC_XFORM_MODE) {
                    // Pad data
                    padding.pad(this._data, this.blockSize);

                    // Process final blocks
                    var finalProcessedBlocks = this._process(!!'flush');
                } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
                    // Process final blocks
                    var finalProcessedBlocks = this._process(!!'flush');

                    // Unpad data
                    padding.unpad(finalProcessedBlocks);
                }

                return finalProcessedBlocks;
            },

            blockSize: 128 / 32
        });

        /**
         * A collection of cipher parameters.
         *
         * @property {WordArray} ciphertext The raw ciphertext.
         * @property {WordArray} key The key to this ciphertext.
         * @property {WordArray} iv The IV used in the ciphering operation.
         * @property {WordArray} salt The salt used with a key derivation function.
         * @property {Cipher} algorithm The cipher algorithm.
         * @property {Mode} mode The block mode used in the ciphering operation.
         * @property {Padding} padding The padding scheme used in the ciphering operation.
         * @property {number} blockSize The block size of the cipher.
         * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
         */
        var CipherParams = C_lib.CipherParams = Base.extend({
            /**
             * Initializes a newly created cipher params object.
             *
             * @param {Object} cipherParams An object with any of the possible cipher parameters.
             *
             * @example
             *
             *     var cipherParams = CryptoJS.lib.CipherParams.create({
             *         ciphertext: ciphertextWordArray,
             *         key: keyWordArray,
             *         iv: ivWordArray,
             *         salt: saltWordArray,
             *         algorithm: CryptoJS.algo.AES,
             *         mode: CryptoJS.mode.CBC,
             *         padding: CryptoJS.pad.PKCS7,
             *         blockSize: 4,
             *         formatter: CryptoJS.format.OpenSSL
             *     });
             */
            init: function (cipherParams) {
                this.mixIn(cipherParams);
            },

            /**
             * Converts this cipher params object to a string.
             *
             * @param {Format} formatter (Optional) The formatting strategy to use.
             *
             * @return {string} The stringified cipher params.
             *
             * @throws Error If neither the formatter nor the default formatter is set.
             *
             * @example
             *
             *     var string = cipherParams + '';
             *     var string = cipherParams.toString();
             *     var string = cipherParams.toString(CryptoJS.format.OpenSSL);
             */
            toString: function (formatter) {
                return (formatter || this.formatter).stringify(this);
            }
        });

        /**
         * Format namespace.
         */
        var C_format = C.format = {};

        /**
         * OpenSSL formatting strategy.
         */
        var OpenSSLFormatter = C_format.OpenSSL = {
            /**
             * Converts a cipher params object to an OpenSSL-compatible string.
             *
             * @param {CipherParams} cipherParams The cipher params object.
             *
             * @return {string} The OpenSSL-compatible string.
             *
             * @static
             *
             * @example
             *
             *     var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
             */
            stringify: function (cipherParams) {
                // Shortcuts
                var ciphertext = cipherParams.ciphertext;
                var salt = cipherParams.salt;

                // Format
                if (salt) {
                    var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
                } else {
                    var wordArray = ciphertext;
                }

                return wordArray.toString(Base64);
            },

            /**
             * Converts an OpenSSL-compatible string to a cipher params object.
             *
             * @param {string} openSSLStr The OpenSSL-compatible string.
             *
             * @return {CipherParams} The cipher params object.
             *
             * @static
             *
             * @example
             *
             *     var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
             */
            parse: function (openSSLStr) {
                // Parse base64
                var ciphertext = Base64.parse(openSSLStr);

                // Shortcut
                var ciphertextWords = ciphertext.words;

                // Test for salt
                if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
                    // Extract salt
                    var salt = WordArray.create(ciphertextWords.slice(2, 4));

                    // Remove salt from ciphertext
                    ciphertextWords.splice(0, 4);
                    ciphertext.sigBytes -= 16;
                }

                return CipherParams.create({ciphertext: ciphertext, salt: salt});
            }
        };

        /**
         * A cipher wrapper that returns ciphertext as a serializable cipher params object.
         */
        var SerializableCipher = C_lib.SerializableCipher = Base.extend({
            /**
             * Configuration options.
             *
             * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
             */
            cfg: Base.extend({
                format: OpenSSLFormatter
            }),

            /**
             * Encrypts a message.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {WordArray|string} message The message to encrypt.
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {CipherParams} A cipher params object.
             *
             * @static
             *
             * @example
             *
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
             */
            encrypt: function (cipher, message, key, cfg) {
                // Apply config defaults
                cfg = this.cfg.extend(cfg);

                // Encrypt
                var encryptor = cipher.createEncryptor(key, cfg);
                var ciphertext = encryptor.finalize(message);

                // Shortcut
                var cipherCfg = encryptor.cfg;

                // Create and return serializable cipher params
                return CipherParams.create({
                    ciphertext: ciphertext,
                    key: key,
                    iv: cipherCfg.iv,
                    algorithm: cipher,
                    mode: cipherCfg.mode,
                    padding: cipherCfg.padding,
                    blockSize: cipher.blockSize,
                    formatter: cfg.format
                });
            },

            /**
             * Decrypts serialized ciphertext.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
             * @param {WordArray} key The key.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {WordArray} The plaintext.
             *
             * @static
             *
             * @example
             *
             *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
             *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
             */
            decrypt: function (cipher, ciphertext, key, cfg) {
                // Apply config defaults
                cfg = this.cfg.extend(cfg);

                // Convert string to CipherParams
                ciphertext = this._parse(ciphertext, cfg.format);

                // Decrypt
                var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);

                return plaintext;
            },

            /**
             * Converts serialized ciphertext to CipherParams,
             * else assumed CipherParams already and returns ciphertext unchanged.
             *
             * @param {CipherParams|string} ciphertext The ciphertext.
             * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
             *
             * @return {CipherParams} The unserialized ciphertext.
             *
             * @static
             *
             * @example
             *
             *     var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
             */
            _parse: function (ciphertext, format) {
                if (typeof ciphertext == 'string') {
                    return format.parse(ciphertext, this);
                } else {
                    return ciphertext;
                }
            }
        });

        /**
         * Key derivation function namespace.
         */
        var C_kdf = C.kdf = {};

        /**
         * OpenSSL key derivation function.
         */
        var OpenSSLKdf = C_kdf.OpenSSL = {
            /**
             * Derives a key and IV from a password.
             *
             * @param {string} password The password to derive from.
             * @param {number} keySize The size in words of the key to generate.
             * @param {number} ivSize The size in words of the IV to generate.
             * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
             *
             * @return {CipherParams} A cipher params object with the key, IV, and salt.
             *
             * @static
             *
             * @example
             *
             *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
             *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
             */
            execute: function (password, keySize, ivSize, salt) {
                // Generate random salt
                if (!salt) {
                    salt = WordArray.random(64 / 8);
                }

                // Derive key and IV
                var key = EvpKDF.create({keySize: keySize + ivSize}).compute(password, salt);

                // Separate key and IV
                var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
                key.sigBytes = keySize * 4;

                // Return params
                return CipherParams.create({key: key, iv: iv, salt: salt});
            }
        };

        /**
         * A serializable cipher wrapper that derives the key from a password,
         * and returns ciphertext as a serializable cipher params object.
         */
        var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
            /**
             * Configuration options.
             *
             * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
             */
            cfg: SerializableCipher.cfg.extend({
                kdf: OpenSSLKdf
            }),

            /**
             * Encrypts a message using a password.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {WordArray|string} message The message to encrypt.
             * @param {string} password The password.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {CipherParams} A cipher params object.
             *
             * @static
             *
             * @example
             *
             *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
             *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
             */
            encrypt: function (cipher, message, password, cfg) {
                // Apply config defaults
                cfg = this.cfg.extend(cfg);

                // Derive key and other params
                var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);

                // Add IV to config
                cfg.iv = derivedParams.iv;

                // Encrypt
                var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);

                // Mix in derived params
                ciphertext.mixIn(derivedParams);

                return ciphertext;
            },

            /**
             * Decrypts serialized ciphertext using a password.
             *
             * @param {Cipher} cipher The cipher algorithm to use.
             * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
             * @param {string} password The password.
             * @param {Object} cfg (Optional) The configuration options to use for this operation.
             *
             * @return {WordArray} The plaintext.
             *
             * @static
             *
             * @example
             *
             *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
             *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
             */
            decrypt: function (cipher, ciphertext, password, cfg) {
                // Apply config defaults
                cfg = this.cfg.extend(cfg);

                // Convert string to CipherParams
                ciphertext = this._parse(ciphertext, cfg.format);

                // Derive key and other params
                var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);

                // Add IV to config
                cfg.iv = derivedParams.iv;

                // Decrypt
                var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);

                return plaintext;
            }
        });
    }());

    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    /**
     * Electronic Codebook block mode.
     */
    CryptoJS.mode.ECB = (function () {
        var ECB = CryptoJS.lib.BlockCipherMode.extend();

        ECB.Encryptor = ECB.extend({
            processBlock: function (words, offset) {
                this._cipher.encryptBlock(words, offset);
            }
        });

        ECB.Decryptor = ECB.extend({
            processBlock: function (words, offset) {
                this._cipher.decryptBlock(words, offset);
            }
        });

        return ECB;
    }());


    /*
    CryptoJS v3.1.2
    code.google.com/p/crypto-js
    (c) 2009-2013 by Jeff Mott. All rights reserved.
    code.google.com/p/crypto-js/wiki/License
    */
    (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var BlockCipher = C_lib.BlockCipher;
        var C_algo = C.algo;

        // Lookup tables
        var SBOX = [];
        var INV_SBOX = [];
        var SUB_MIX_0 = [];
        var SUB_MIX_1 = [];
        var SUB_MIX_2 = [];
        var SUB_MIX_3 = [];
        var INV_SUB_MIX_0 = [];
        var INV_SUB_MIX_1 = [];
        var INV_SUB_MIX_2 = [];
        var INV_SUB_MIX_3 = [];

        // Compute lookup tables
        (function () {
            // Compute double table
            var d = [];
            for (var i = 0; i < 256; i++) {
                if (i < 128) {
                    d[i] = i << 1;
                } else {
                    d[i] = (i << 1) ^ 0x11b;
                }
            }

            // Walk GF(2^8)
            var x = 0;
            var xi = 0;
            for (var i = 0; i < 256; i++) {
                // Compute sbox
                var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
                sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
                SBOX[x] = sx;
                INV_SBOX[sx] = x;

                // Compute multiplication
                var x2 = d[x];
                var x4 = d[x2];
                var x8 = d[x4];

                // Compute sub bytes, mix columns tables
                var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
                SUB_MIX_0[x] = (t << 24) | (t >>> 8);
                SUB_MIX_1[x] = (t << 16) | (t >>> 16);
                SUB_MIX_2[x] = (t << 8) | (t >>> 24);
                SUB_MIX_3[x] = t;

                // Compute inv sub bytes, inv mix columns tables
                var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
                INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
                INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
                INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
                INV_SUB_MIX_3[sx] = t;

                // Compute next counter
                if (!x) {
                    x = xi = 1;
                } else {
                    x = x2 ^ d[d[d[x8 ^ x2]]];
                    xi ^= d[d[xi]];
                }
            }
        }());

        // Precomputed Rcon lookup
        var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];

        /**
         * AES block cipher algorithm.
         */
        var AES = C_algo.AES = BlockCipher.extend({
            _doReset: function () {
                // Shortcuts
                var key = this._key;
                var keyWords = key.words;
                var keySize = key.sigBytes / 4;

                // Compute number of rounds
                var nRounds = this._nRounds = keySize + 6;

                // Compute number of key schedule rows
                var ksRows = (nRounds + 1) * 4;

                // Compute key schedule
                var keySchedule = this._keySchedule = [];
                for (var ksRow = 0; ksRow < ksRows; ksRow++) {
                    if (ksRow < keySize) {
                        keySchedule[ksRow] = keyWords[ksRow];
                    } else {
                        var t = keySchedule[ksRow - 1];

                        if (!(ksRow % keySize)) {
                            // Rot word
                            t = (t << 8) | (t >>> 24);

                            // Sub word
                            t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];

                            // Mix Rcon
                            t ^= RCON[(ksRow / keySize) | 0] << 24;
                        } else if (keySize > 6 && ksRow % keySize == 4) {
                            // Sub word
                            t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
                        }

                        keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
                    }
                }

                // Compute inv key schedule
                var invKeySchedule = this._invKeySchedule = [];
                for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
                    var ksRow = ksRows - invKsRow;

                    if (invKsRow % 4) {
                        var t = keySchedule[ksRow];
                    } else {
                        var t = keySchedule[ksRow - 4];
                    }

                    if (invKsRow < 4 || ksRow <= 4) {
                        invKeySchedule[invKsRow] = t;
                    } else {
                        invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
                            INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
                    }
                }
            },

            encryptBlock: function (M, offset) {
                this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
            },

            decryptBlock: function (M, offset) {
                // Swap 2nd and 4th rows
                var t = M[offset + 1];
                M[offset + 1] = M[offset + 3];
                M[offset + 3] = t;

                this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);

                // Inv swap 2nd and 4th rows
                var t = M[offset + 1];
                M[offset + 1] = M[offset + 3];
                M[offset + 3] = t;
            },

            _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
                // Shortcut
                var nRounds = this._nRounds;

                // Get input, add round key
                var s0 = M[offset] ^ keySchedule[0];
                var s1 = M[offset + 1] ^ keySchedule[1];
                var s2 = M[offset + 2] ^ keySchedule[2];
                var s3 = M[offset + 3] ^ keySchedule[3];

                // Key schedule row counter
                var ksRow = 4;

                // Rounds
                for (var round = 1; round < nRounds; round++) {
                    // Shift rows, sub bytes, mix columns, add round key
                    var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
                    var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
                    var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
                    var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];

                    // Update state
                    s0 = t0;
                    s1 = t1;
                    s2 = t2;
                    s3 = t3;
                }

                // Shift rows, sub bytes, add round key
                var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
                var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
                var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
                var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];

                // Set output
                M[offset] = t0;
                M[offset + 1] = t1;
                M[offset + 2] = t2;
                M[offset + 3] = t3;
            },

            keySize: 256 / 32
        });

        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.AES.decrypt(ciphertext, key, cfg);
         */
        C.AES = BlockCipher._createHelper(AES);
    }());


    BI._.extend(BI, {
        /**
         * aes加密方法
         * aes-128-ecb
         *
         * @example
         *
         *     var ciphertext = BI.aesEncrypt(text, key);
         */
        aesEncrypt: function (text, key) {
            key = CryptoJS.enc.Utf8.parse(key);
            var cipher = CryptoJS.AES.encrypt(text, key, {
                mode: CryptoJS.mode.ECB,
                padding: CryptoJS.pad.Pkcs7
            });

            var base64Cipher = cipher.ciphertext.toString(CryptoJS.enc.Base64);
            return base64Cipher;
        },

        /**
         * aes解密方法
         * @param {String} text 
         * @param {String} key 
         */
        aesDecrypt: function (text, key) {
            key = CryptoJS.enc.Utf8.parse(key);
            var decipher = CryptoJS.AES.decrypt(text, key, {
                mode: CryptoJS.mode.ECB,
                padding: CryptoJS.pad.Pkcs7
            });

            return CryptoJS.enc.Utf8.stringify(decipher);
        }
    });
}());